--- title: "東京大学大学院 情報理工入試過去問(数学)解答・2020年 第三問" tags: u-tokyo, exam --- <style> .markdown-body h1 > span:last-child{ font-size: 18pt; float: right; width: 100%; text-align: right; border-bottom: 1pt #EEE solid; padding-bottom: 5pt; margin-bottom: 5pt } .markdown-body h1{ border: none; } .markdown-body h2{ padding-top: 8px; padding-left: 5px; color: black; background-color: #F2D7D9; z-index: 1; } .markdown-body h3{ padding: 5px 0 5px 5px; background-color: #D3CEDF } .markdown-body h4{ position: relative; line-height: 28pt; padding-left: 5px; color: #FFFFFF; font-size: 13pt; background-color: #9CB4CC; } /* Pallete #F2D7D9 #D3CEDF #9CB4CC #748DA6 */ </style> <!-- Probability & Statistics Related --> $$ \newcommand{\prob}[1]{\mathrm{P}(#1)} \newcommand{\probsub}[2]{\mathrm{P}_{#1}(#2)} \newcommand{\func}[2]{\mathrm{#1}(#2)} \newcommand{\funcsub}[3]{\mathrm{#1}_{#2}(#3)} \newcommand{\excp}[1]{\mathrm{E}(#1)} $$ <!-- Linear Algebra Related --> $$ \require{boldsymbol} \newcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\bmat}[1]{\begin{bmatrix} #1 \end{bmatrix}} \newcommand{\rank}[1]{\mathrm{rank}(#1)} \newcommand{\nobj}[3]{#1_1{#3\;} #1_2{#3} \;\ldots\; {#3} #1_#2} \newcommand{\nobjsuf}[4]{#1_1#3{#4\;} #1_2#3{#4\;} \;\ldots\; {#4\;} #1_#2#3} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\trps}[1]{#1^{\moveleft{1.5px}{\raise{2px}{\mathrm{T}}}}} \newcommand{\inv}[1]{#1^{-1}} $$ # 東京大学大学院 情報理工入試過去問(数学)<br><span style="float: right;">解答・2020年 第三問</span> + こちらの解答は非公式に作成されており、大学院側に認められたものではありません。正確性についての保証は致しかねます。 + 問題本文は研究科のウェブサイトから見ることができます。 + 満足出来た解答でしたらコメントしていただけると幸いです。 ## 2020年 第三問 First we find the formula for $P_n(r)$ in question (3) *then* use it to solve (1) and (2). ### (3) Find formula to $\mathrm{P}_n(r)$. Assume the applicant with absolute rank $1$ is at position $k$, where $k \geq r$, so that the order is like: $$ A_1 - A_2 - \cdots - A_{r-1} - A_r - A_{r+1} - \cdots - A_{k - 1} - A_{k} - A_{k+1} - \cdots - A_{n - 1} - A_{n} $$ Where $A_k$ is the applicant with the absolute rank $1$. In order to pick the applicant $A_k$, the smallest rank applicant within the range $[A_1, A_{k - 1}]$ **must** be in the range $[A_1, A_{r - 1}]$, or the applicant (or others with higher rank) would be picked, Deducing the probability to pick $A_k$ being $\displaystyle\frac{r - 1}{k - 1}$ for each $k$. Since the probability of $k$ being at any position is uniformly distributed, and the restriction $k \geq r$ for the applicant not be rejected unconditionally, we result in the probability $$ \probsub{n}{r} = \displaystyle \sum^{n}_{k = r} \frac{1}{n} \frac{r - 1}{k - 1} = \frac{r - 1}{n} \sum^{n}_{k = r} \frac{1}{k - 1}. $$ ### (1) Find $\probsub{4}{2}$. Plug in the parameters to get: $$ \probsub{4}{2} = \frac{2 - 1}{4} \sum^{4}_{k = 2} \frac{1}{k - 1} = \frac{1}{4}(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}) = \frac{1}{4} \cdot \frac{6 + 3 + 2}{6} = \frac{11}{24} $$ ### (2) Prove that $\probsub{10}{3} = \frac{2}{10}(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{9})$. Plug in the parameters to get: $$ \probsub{10}{3} = \frac{3 - 1}{10} \sum^{10}_{k = 3} \frac{1}{k - 1} = \frac{2}{10}(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{9}) $$ ### (4) Find the recursive relation $\probsub{n}{r} = \func{A}{n, r} + \func{B}{n, r}\probsub{n}{r + 1}$ First, we have: $$ \begin{cases} \probsub{n}{r} = \displaystyle\frac{r - 1}{n} \sum^{n}_{k = r} \frac{1}{k - 1} = \frac{r - 1}{n}\Big(\frac{1}{r - 1} + \sum^{n}_{k = r + 1} \frac{1}{k - 1}\Big)\\[1em] \probsub{n}{r + 1} = \displaystyle\frac{r}{n} \sum^{n}_{k = r + 1} \frac{1}{k - 1} \end{cases} $$ Then, if we let $s = \displaystyle \sum^{n}_{k = r + 1} \frac{1}{k - 1}$, we get: $$ \begin{align} \begin{cases} \probsub{n}{r} = \displaystyle \frac{r - 1}{n}\Big(s + \frac{1}{r - 1}\Big) \\ \probsub{n}{r + 1} = \displaystyle \frac{r}{n} \cdot s \end{cases} &\Rightarrow \begin{cases} \probsub{n}{r} = \displaystyle \frac{r - 1}{n}\Big(s + \frac{1}{r - 1}\Big) \\ s = \displaystyle \frac{n}{r} \probsub{n}{r + 1} \end{cases} \\[1em] &\Rightarrow \probsub{n}{r} = \displaystyle \frac{r - 1}{n}\Big( \frac{n}{r}\probsub{n}{r + 1} + \frac{1}{r - 1} \Big) \\[1em] &\color{transparent}{\Rightarrow}\color{transparent}{\probsub{n}{r}} = \displaystyle\frac{r - 1}{r} \probsub{n}{r + 1} + \frac{1}{n} \end{align} $$ Resulting in: $$ \begin{cases} \func{A}{n, r} = \displaystyle \frac{1}{n} \\ \func{B}{n, r} = \displaystyle \frac{r - 1}{r} \end{cases} $$ ### (5) Let $q = \frac{r}{n}$. Explain that $\probsub{n}{r} \rightarrow -q\ln(q)$ as $n \rightarrow \infty$. First, we lay out the formula for convidence. $$ \probsub{n}{r} = \displaystyle \frac{r - 1}{n} \sum^{n}_{k = r} \frac{1}{k - 1} $$ ---- + When $q$ is very large, we can approximate $\displaystyle\frac{r - 1}{n} \approx \displaystyle\frac{r}{n} = q$. + Let $t = \frac{n}{k}$, and $\frac{1}{n} = dt$ as $n \rightarrow \infty$. Then the sum becomes a Reimman approximation to a integral, $$ q \displaystyle\int^{1}_q \frac{1}{t}dt = -q \ln{q} $$