--- title: "東京大学大学院 情報理工入試過去問(数学)解答・2019年 第一問" tags: u-tokyo, exam --- # 東京大学大学院 情報理工入試過去問(数学)<br><span style="float: right;">―解答・2019年 第一問</span> <style> .markdown-body h1 > span:last-child{ font-size: 18pt; float: right; width: 100%; text-align: right; border-bottom: 1pt #EEE solid; padding-bottom: 5pt; margin-bottom: 5pt } .markdown-body h1{ border: none; } .markdown-body h2{ padding-top: 8px; padding-left: 5px; color: black; background-color: #F2D7D9; z-index: 1; } .markdown-body h3{ padding: 5px 0 5px 5px; background-color: #D3CEDF } .markdown-body h4{ position: relative; line-height: 28pt; padding-left: 5px; color: #FFFFFF; font-size: 13pt; background-color: #9CB4CC; } .markdown-body .alert-info{ background-color: #748DA6; border: none; box-shadow: 4px 4px 3px #9CB4CC; color: #FFFFFF; } .markdown-body .mjx-sub{ font-size: 65% !important; } /* Pallete #F2D7D9 #D3CEDF #9CB4CC #748DA6 */ </style> <!-- Requiring Mathjax Packages --> $$ \require{cancel} $$ <!-- Probability & Statistics Related --> $$ \newcommand{\prob}[1]{\mathrm{P}(#1)} \newcommand{\probsub}[2]{\mathrm{P}_{#1}(#2)} \newcommand{\func}[2]{\mathrm{#1}(#2)} \newcommand{\funcsub}[3]{\mathrm{#1}_{#2}(#3)} \newcommand{\excp}[1]{\mathrm{E}(#1)} \newcommand{\cdf}[1]{\mathrm{F}(#1)} \newcommand{\cdfsub}[2]{\mathrm{F}_{\raise{2px}{\moveleft{3px}{#1}}}(#2)} $$ <!-- Linear Algebra Related --> $$ \require{boldsymbol} \newcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\bmat}[1]{\begin{bmatrix} #1 \end{bmatrix}} \newcommand{\vmat}[1]{\begin{vmatrix} #1 \end{vmatrix}} \newcommand{\rank}[1]{\mathrm{rank}(#1)} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\trps}[1]{#1^{\moveleft{1.5px}{\raise{2px}{\mathrm{T}}}}} \newcommand{\inv}[1]{#1^{-1}} $$ <!-- General Macros --> $$ \newcommand{\intinf}{\displaystyle\int^{\infty}_{-\infty}} \newcommand{\intlo}[1]{\displaystyle\int^{#1}_{-\infty}} \newcommand{\inthi}[1]{\displaystyle\int^{\infty}_{#1}} \newcommand{\nobj}[3]{#1_1{\;#3\;} #1_2{\;#3} \;\ldots\; {#3\;} #1_#2} \newcommand{\nobjsfx}[4]{#1_1#3{\;#4\;} #1_2#3{\;#4} \;\ldots\; {#4\;} #1_#2#3} $$ + こちらの解答は非公式で個人記録用に作成されており、大学院側に認められたものではありません。正確性についての保証は致しかねます。 + 問題本文は研究科のウェブサイトから見ることができます。 + 満足出来た解答でしたらコメントしていただけると幸いです。 ## 2019年 第一問 Let $A^*$ is the conjugate transpose matrix of a complex square matrix $A$. If $A^*A = I$, then $A$ is **unitary**. ### (1) Prove that if $A, B$ are unitary, $AB$ is also unitary. If $A, B$ are unitary, then: $$ (AB)^*(AB) = B^*A^*AB = B^*IB = B^*B = I $$ So $AB$ is also unitary. ### (2) Let for some real square matrix $C, D$ with size $n$, $$F = C + iD\;\;\;\;\;\;\;\;G = \bmat{C & -D \\ D & C}$$ <br>&emsp;&ensp;Prove that $G$ is orthogonal if and only if $F$ is unitary. If $G$ is orthogonal, then: $$ \begin{align} \trps{G}G &= \bmat{\trps{C} & \trps{D} \\ -\trps{D} & \trps{C}}\bmat{C & -D \\ D & C} \\ &= \bmat{ \trps{C}C + \trps{D}D & C\trps{D} - \trps{C}D \\ \trps{C}D - C\trps{D} & \trps{C}C + \trps{D}D } = I \end{align} $$ Inducing that, + $C\trps{D} - \trps{C}D = \trps{C}D - C\trps{D} = 0 \Rightarrow \trps{C}D = C\trps{D}$ + $\trps{C}C + \trps{D}D = I$ If $F$ is unitary, then: $$ \begin{align} (C + iD)^*(C + iD) &= \trps{C - iD}(C + iD) \\ &= (\trps{C} - i\trps{D})(C + iD) \\ &= \trps{C}C + i\trps{C}D + i\left( C\trps{D} - \trps{D}D \right) = I \end{align} $$ Inducing that: + $\trps{C}C + i\trps{C}D = I$ + $C\trps{D} - \trps{D}D = 0 \Rightarrow C\trps{D} = \trps{D}D$ which are the same as the properties of $G$ when its orthogonal. Thus, $G$ is orthogonal if and only if $F$ is unitary. ### (3) Find the eigenvalues of $$\displaystyle{1 \over 2}\bmat{1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\1 & -1 & 1 & -1 \\ 1 & -i & -1 & i}$$ For some scalar $C$ scaling matrix $M$ having eigenvalue $\lambda$: $$ (cM)\vec{v} = c(M\vec{v}) = c(\lambda\vec{v}) = (c\lambda)\vec{v} $$ So we can instead find eigenvalues for $\bmat{1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\1 & -1 & 1 & -1 \\ 1 & -i & -1 & i}$ then scale it down by $\displaystyle {1 \over 2}$. To find the eigenvalues, we let $\det{(A - \lambda I)} = 0$, then: $$ \vmat{ 1 - \lambda & 1 & 1 & 1 \\ 1 & i - \lambda & -1 & -i \\ 1 & -1 & 1 - \lambda & -1 \\ 1 & -i & -1 & i - \lambda } = \vmat{ 1 - \lambda & 1 & 1 & 1 \\ 1 & i - \lambda & -1 & -i \\ 2 - \lambda & 0 & 2 - \lambda & 0 \\ 1 & -i & -1 & i - \lambda } = \vmat{ 1 - \lambda & 1 & \lambda & 1 \\ 1 & i - \lambda & -2 & -i \\ 2 - \lambda & 0 & 0 & 0 \\ 1 & -i & -2 & i - \lambda } \\ \Rightarrow (2 - \lambda)\vmat{ 1 & \lambda & 1 \\ i - \lambda & -2 & -i \\ -i & -2 & i - \lambda } = 0 \\ \Rightarrow (2 - \lambda)(-\lambda^3 - 2i\lambda^2 + 4\lambda - 16i) = 0 \\ \Rightarrow (2 - \lambda)^2(1 - 2i)(2 + \lambda) = 0 $$ Multiplying by $1 \over 2$, thus the four eigenvalues are: $$ \begin{align} \lambda_1 &= i\\ \lambda_2 &= -1\\ \lambda_3 &= \lambda_4 = 1 \end{align} $$ ### (4) For some integer $n$ and a matrix $Q$ whose entry is defined as: $$q_{jk} = \frac{1}{\sqrt{n}}e^{\frac{2i\pi(j - 1)(k - 1)}{n}}$$&emsp;, Prove that $Q$ is unitary. By Euler's formula, we know that: $$ q_{jk} = \frac{1}{\sqrt{n}}\left[ \cos\frac{2(j-1)(k-1)}{n}\pi + i\sin\frac{2(j-1)(k-1)}{n}\pi \right] = \frac{1}{\sqrt{n}}e^{\frac{2(j-1)(k-1)}{n}\pi i} $$ Also, for the conjugate transpose $Q^*$, since $\begin{cases} -\sin\theta = \sin-\theta \\ \cos\theta = \cos-\theta \end{cases}$: $$ \begin{align} q^*_{jk} = \overline{q_{kj}} &= \frac{1}{\sqrt{n}}\left[ \cos\frac{2(j-1)(k-1)}{n}\pi - i\sin\frac{2(j-1)(k-1)}{n}\pi \right] \\ &= \frac{1}{\sqrt{n}}\left[ \cos\left(-\frac{2(j-1)(k-1)}{n}\pi\right) + i\sin\left(-\frac{2(j-1)(k-1)}{n}\pi\right) \right] \\ &= \frac{1}{\sqrt{n}}e^{-\frac{2(j-1)(k-1)}{n}\pi i} \end{align} $$ Then, for the entries of $Q' = QQ^*$: $$ \begin{align} q'_{jk} &= \displaystyle \sum_{s = 1}^n q_{js}q^*_{sk} \\ &= \displaystyle \sum_{s = 1}^n \frac{1}{\sqrt{n}}e^{\frac{2(j-1)(s-1)}{n}\pi i}\frac{1}{\sqrt{n}}e^{-\frac{2(s-1)(k-1)}{n}\pi i} \\ &= {1 \over n} \displaystyle \sum_{s = 1}^n e^{(s - 1)(j - k)\frac{2 \pi}{n}i} \\ &= {1 \over n} \displaystyle \sum_{s = 1}^n e^{s(j - k)\frac{2 \pi}{n}i}e^{-(j - k)\frac{2 \pi}{n}i} \\ &= {e^{-(j - k)\frac{2 \pi}{n}i} \over n} \displaystyle \sum_{s = 1}^n \left[e^{(j - k)\frac{2 \pi}{n}i}\right]^s \end{align} $$ + If $j = k$, then the formula becomes: $$ {e^0 \over n} \displaystyle \sum_{s = 1}^{n} e^0 = 1 $$ + If $j \neq k$, since $0 < j - k \leq n$, $e^{(j - k)\frac{2 \pi}{n}i}$ is the $n^\text{th}$ root of unity, having the following property results in the result $0$ $$ \displaystyle \sum_{s = 1}^n \left[e^{(j - k)\frac{2 \pi}{n}i}\right]^s = 0 $$ In conclusion, the product matrix has $1$ in diagonol positions and $0$ in others, implies $QQ^* = I$, thus $Q$ is unitary. ### (5) Prove that the general form of a $2 \times 2$ unitary matrix with determinant $1$, where $\psi, \theta \in \mathbb{R}$, is:$$\bmat{e^{i\psi}\cos \theta & e^{i\psi}\sin \theta \\ -e^{-i\psi}\sin \theta & e^{-i\psi}\cos \theta}$$ ### (6) Find the general form of a $2 \times 2$ unitary matrix. A $2 \times 2$ complex matrix can represented as, where $a, b, c, d \in \mathbb{C}$: $$ M = \bmat{ a & b \\ c & d } $$ If $M$ is unitary, it implies that: $$ \inv{M} = M^* \Rightarrow \frac{1}{\det M}\,\bmat{d & -b \\ -c & a} = \bmat{\overline{a} & \overline{c} \\ \overline{b} & \overline{d}} \Rightarrow \begin{cases} d = \overline{a} \det M \\ a = \overline{d} \det M \\[1ex] -b = \overline{c} \det M \\ -c = \overline{b} \det M \end{cases} $$ The first two equations implies $d = d \cdot \overline{\det M} \cdot \det M = d \cdot \left\| \det M \right\|^2$; + If $d \neq 0$, then $\left\| \det M \right\|^2 = 1 \Rightarrow \det M = e^{i\theta}$ where $\theta \in \mathbb{R}$. + If $d = 0$, since $\inv{M}$ exists, proving $b, c \neq 0$, then $b = b \cdot \overline{\det M} \cdot \det M$ also implies $\det M = e^{i\theta}$ where $\theta \in \mathbb{R}$. Substuting $\det M = e^{i\theta}$ back to the equation we get: $$ \begin{cases} d = e^{i \theta}\overline{a} \\ c = -e^{i \theta}\overline{b} \end{cases} $$ Hence the general form of a $2 \times 2$ unitary matrix is, where $a, b \in \mathbb{C}, \theta \in \mathbb{R}$: $$ \bmat{ a & b \\ -e^{i \theta}\overline{b} & e^{i \theta}\overline{a} } $$