--- title: "東京大学大学院 情報理工入試過去問(数学)解答・2018年 第一問" tags: u-tokyo, exam --- <style> .markdown-body h1 > span:last-child{ font-size: 18pt; float: right; width: 100%; text-align: right; border-bottom: 1pt #EEE solid; padding-bottom: 5pt; margin-bottom: 5pt } .markdown-body h1{ border: none; } .markdown-body h2{ padding-top: 8px; padding-left: 5px; color: black; background-color: #F2D7D9; z-index: 1; } .markdown-body h3{ padding: 5px 0 5px 5px; background-color: #D3CEDF } .markdown-body h4{ position: relative; line-height: 28pt; padding-left: 5px; color: #FFFFFF; font-size: 13pt; background-color: #9CB4CC; } /* Pallete #F2D7D9 #D3CEDF #9CB4CC #748DA6 */ </style> <!-- Probability & Statistics Related --> $$ \newcommand{\prob}[1]{\mathrm{P}(#1)} \newcommand{\probsub}[2]{\mathrm{P}_{#1}(#2)} \newcommand{\func}[2]{\mathrm{#1}(#2)} \newcommand{\funcsub}[3]{\mathrm{#1}_{#2}(#3)} \newcommand{\excp}[1]{\mathrm{E}(#1)} $$ <!-- Linear Algebra Related --> $$ \require{boldsymbol} \newcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\bmat}[1]{\begin{bmatrix} #1 \end{bmatrix}} \newcommand{\rank}[1]{\mathrm{rank}(#1)} \newcommand{\nobj}[3]{#1_1{#3\;} #1_2{#3} \;\ldots\; {#3} #1_#2} \newcommand{\nobjsuf}[4]{#1_1#3{#4\;} #1_2#3{#4\;} \;\ldots\; {#4\;} #1_#2#3} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\trps}[1]{#1^{\moveleft{1.5px}{\raise{2px}{\mathrm{T}}}}} \newcommand{\inv}[1]{#1^{-1}} $$ # 東京大学大学院 情報理工入試過去問(数学)<br><span style="float: right;">解答・2018年 第一問</span> + こちらの解答は非公式に作成されており、大学院側に認められたものではありません。正確性についての保証は致しかねます。 + 問題本文は研究科のウェブサイトから見ることができます。 + 満足出来た解答でしたらコメントしていただけると幸いです。 ## 2020年 第三問 ### (1) Let $A = \bmat{ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 }, \vec{b} = \bmat{ 2 \\ 4 \\ 2 }, \overline{A} = \bmat{ A \mid \vec{b} } = \bmat{ | & | & | & | \\ a_1 & a_2 & a_3 & a_4 \\ | & | & | & | }$. #### (i) Find the maximum number of linear independent vectors among $\vec{a}_1 \sim \vec{a}_3$. $\vec{a}_1 + \vec{a}_2 = \vec{a}_3$, and $\vec{a}_1 \geq k\vec{a}_2$ for any $k$. So the max number of independent vectors is $2$. #### (ii) Find $x_1, x_2$ for $\vec{a}_4 = x_1\vec{a}_1 + x_2\vec{a}_2 + \vec{a}_3$. $$ \vec{a}_4 = 3\vec{a}_1 + 1\vec{a}_2 + \vec{a}_3 $$ #### (iii) Find the maximum number of linear independent vectors among $\vec{a}_1 \sim \vec{a}_4$. Since $\vec{a}_4$ can be decomposited using $\vec{a}_1, \vec{a}_2$ and $\vec{a}_3$, its linearly dependent to them. So the maximum number of linearly independent vectors among them is still $2$. ### (2) Prove that the solution exists for $A\vec{x}= \vec{b}$ when $\rank{\overline{A}} = \rank{A}$, where $A \in \mathcal{R}^{m\times n}, \vec{b} \in \mathcal{R}^m$ Let $A = \bmat{ | & | & \cdots & | \\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_m \\ | & | & \cdots & | }$ and $b = \vec{a}_{m + 1}$. If $\rank{\overline{A}} = \rank{A}$, then $\vec{a}_{m + 1}$ must be linearly dependent to $\vec{a}_1, \vec{a}_2, \ldots \; \vec{a}_m$, meaning that there exists a combination of $x_1, x_2, \ldots x_m$ so that $x_1\vec{a}_1 + x_2\vec{a}_2 + \ldots + x_m\vec{a}_m = \vec{a}_{m + 1}$, or $\bmat{ | & | & \cdots & | \\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_m \\ | & | & \cdots & | }\bmat{x_1 \\ x_2 \\ \vdots \\ x_m} = \vec{a}_{m + 1}$, $\vec{x} = \bmat{x_1 \\ x_2 \\ \vdots \\ x_m}$. ### (3) Find $x$ that minimize the value of $\|{\vec{b} - A\vec{x}}\|^2$, <br>where $A \in \mathcal{R}^{m \times n}$, $m > n, \rank{A} = n$ and $\rank{\overline{A}} > \rank{A}$. Since $\rank{\overline{A}} > \rank{A}$, $\vec{b}$ is linearly independent to $\nobj{\vec{a}}{m}{,}$, meaning no $\vec{x}$ exists so that $A\vec{x} = \vec{b}$, a.k.a, $\vec{b}$ is not in the column space of $A$. To minimize $\| \vec{b} - A\vec{x} \|^2$, let $\hat{\vec{x}}$ be said $\vec{x}$. + $A\hat{x}$ is in the column space of $A$ + Since $\hat{x}$ is defined to minimize $\|\vec{b} - A\hat{\vec{x}}\|^2$, $\vec{b} - A\hat{\vec{x}}$ has to be orthogonal to the column space of $A$ Thus we can know that for all column vectors $\nobj{\vec{a}}{m}{,}$, $\vec{a}_i^{\mathrm{T}}(\vec{b} - A\hat{\vec{x}})$, or we can say: $$ \begin{align} \trps{A}{A}(\vec{b} - A\hat{\vec{x}}) = 0 &\Rightarrow \trps{A}\vec{b} = \hat{\vec{x}} \\[1ex] &\Rightarrow (\trps{A}A)^{-1}\trps{A}\vec{b} = \hat{\vec{x}} \end{align} $$ > + Since $A$ has indepenent columns, we know $\trps{A}A$ is invertible. ### (4) Using Lagrange multipliers along $A\vec{x} = \vec{b}$, find $\vec{x}$ that minimizes $\| \vec{x} \|^2$, <br> where $A \in \mathcal{R}^{m \times n}$, $m < n$, and $\rank{A} = m$. Since there are $m$ different linear equations as constraints, we let + $\nobj{\lambda}{m}{, }$ be the Lagrange multipliers + $f(\nobj{x}{n}{,}) = \|\vec{x}\|^2 = \nobjsuf{x}{n}{^2}{+ }$ + The contraints are $g_i = a_{i, 1}x_1 + a_{i, 2}x_2 + \ldots + a_{i, n}x_n$ for $i = 1$ to $m$ And we have the equation: $$ \begin{align} &\color{transparent}{\Rightarrow} \nabla f(\nobj{x}{n}{,}) = \displaystyle \sum^{m}_{i = 1}\lambda_i\nabla g_i(\nobj{x}{n}{,}) \\[2ex] &\Rightarrow \begin{cases} 2x_1 &= \lambda_1a_{1, 1} + \lambda_2a_{2, 1} + \ldots + \lambda_ma_{m, 1} \\ 2x_2 &= \lambda_1a_{1, 2} + \lambda_2a_{2, 2} + \ldots + \lambda_ma_{m, 2} \\ &\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\vdots \\ 2x_n &= \lambda_1a_{1, n} + \lambda_2a_{2, n} + \ldots + \lambda_ma_{m, n} \end{cases}, \;\;\text{ Let } \vec{\lambda} = \bmat{\lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m} \\[2ex] &\Rightarrow 2\vec{x} = \trps{A}\vec{\lambda} \Rightarrow \vec{x} = \frac{\trps{A}\vec{\lambda}}{2} \end{align} $$ Substitute into $A\vec{x} = \vec{b}$, we get: $$ \begin{align} &\color{transparent}{\Rightarrow} \frac{1}{2} A\trps{A}\lambda = b \\[1ex] &\Rightarrow A\trps{A}\lambda = 2b \\[1ex] &\Rightarrow \inv{(A\trps{A})}(A\trps{A})\lambda = 2\inv{(A\trps{A})}b \\[1ex] \end{align} $$ > + Since $\trps{A}$ has indpendent columns, we know $A\trps{A}$ is invertible. Again substitute back to $2\vec{x} = \trps{A}\vec{\lambda}$, we result in: $$ 2\vec{x} = \trps{A}\vec{\lambda} = \trps{A}2\inv{(A\trps{A})}\vec{b} \\ \Rightarrow \vec{x} = \trps{A}\inv{(A\trps{A})}\vec{b} $$ ### (5) Show that there exists unique $P = \mathcal{R}^{n \times m}$ satisfing $\begin{cases} APA = A \\ PAP = P \\ \trps{(AP)} = AP \\ \trps{(PA)} = PA \end{cases}$ <br> where $A \in \mathcal{R}^{m \times n}$. Since they are orthogonal matrices, the inverses exists, and their transpose is their inverse. Thus we can say: $$ \begin{align} APA = A &\Rightarrow U\Sigma\trps{V}PU\Sigma\trps{V} = U\Sigma\trps{V} \\ &\Rightarrow \Sigma\trps{V}PU\Sigma = \Sigma \\ &\Rightarrow \trps{V}PU = \inv{\Sigma}\\ &\Rightarrow P = V\inv{\Sigma}\trps{U} \end{align} $$ Assume two matrices $X, Y$ satisfying the equations. Then, we know: $$ \begin{align} X &= XAX &\tiny\text{ (From equation 2) } \\ &= X\trps{(AX)} &\tiny\text{ (From equation 3) } \\ &= X\trps{X}\trps{A} = X\trps{X}\trps{(AYA)} &\tiny\text{ (From equation 1) } \\ &= X\trps{X}\trps{A}\trps{(AY)} = X\trps{(AX)}\trps{AY} = (XAX)AY \\ &= XAY = \trps{(XA)}Y &\tiny\text{ (From equation 4) } \\ &= \trps{(XA)}YAY &\tiny\text{ (From equation 2) } \\ &= \trps{A}\trps{X}\trps{(YA)}Y &\tiny\text{ (From equation 4) } \\ &= \trps{A}\trps{X}\trps{A}\trps{Y}Y = \trps{(XA)}\trps{A}\trps{Y}Y = \trps{[A(XA)]}\trps{Y}Y \\ &= \trps{(AXA)}\trps{Y}Y = \trps{A}\trps{Y}Y &\tiny\text{ (From equation 1) } \\ &= \trps{(YA)}Y = YAY &\tiny\text{ (From equation 4) } \\ &= Y &\tiny\text{ (From equation 2) } \\ \end{align} $$ Thus such $P$ must be unique. ### (6) Show that both $x$ described in (3) and (4) satisfies $\vec{x} = P\vec{b}$. From equation 1 and 3, we can know that $$ A = APA = \trps{(AP)}A = \trps{P}\trps{A}A $$ If $A$, like in question (3), has independent columns, then $\trps{A}A$ is invertible, se we futhur get: $$ \begin{align} \trps{P}\trps{A}A = A &\Rightarrow \trps{P} = A\inv{(\trps{A}A)} \\ &\Rightarrow P = \trps{\big[ A\inv{(\trps{A}A)} \big]} = \trps{(\inv{(\trps{A}A)})}\trps{A} \end{align} $$ Since for any matrix $A$, $\trps{A}A$ is symmetric, we know $\inv{(\trps{A}A)}$ is also symmetric, thus: $$ P = \inv{(\trps{A}A)}\trps{A} $$ With the result in (3) where $\vec{x} = \inv{(\trps{A}A)}\trps{A}\vec{b}$, we can conclude $\vec{x} = P\vec{b}$. ---- From equation 1 and 4, we can know that $$ A = APA = A\trps{(PA)} = A\trps{A}\trps{P} $$ If $A$, like in question (3), has independent rows(a.k.a., $\trps{A}$ hs independent columns), then $A\trps{A}$ is invertible, se we futhur get: $$ \begin{align} A\trps{A}\trps{P} = A &\Rightarrow \trps{P} = \inv{(A\trps{A})}A \\ &\Rightarrow P = \trps{\big[ \inv{(A\trps{A})}A \big]} = \trps{A}\trps{\big[ \inv{(A\trps{A})} \big]} \end{align} $$ Since for any matrix $A$, $A\trps{A}$ is symmetric, we know $\inv{(A\trps{A})}$ is also symmetric, thus: $$ P = \trps{A}\inv{(A\trps{A})} $$ With the result in (4) where $\vec{x} = \trps{A}\inv{(A\trps{A})}\vec{b}$, we can again conclude $\vec{x} = P\vec{b}$.