--- title: "東京大学大学院 情報理工入試過去問(数学)解答・2017年 第三問" tags: u-tokyo, exam --- # 東京大学大学院 情報理工入試過去問(数学)<br><span style="float: right;">―解答・2017年 第三問</span> <style> .markdown-body h1 > span:last-child{ font-size: 18pt; float: right; width: 100%; text-align: right; border-bottom: 1pt #EEE solid; padding-bottom: 5pt; margin-bottom: 5pt } .markdown-body h1{ border: none; } .markdown-body h2{ padding-top: 8px; padding-left: 5px; color: black; background-color: #F2D7D9; z-index: 1; } .markdown-body h3{ padding: 5px 0 5px 5px; background-color: #D3CEDF } .markdown-body h4{ position: relative; line-height: 28pt; padding-left: 5px; color: #FFFFFF; font-size: 13pt; background-color: #9CB4CC; } .markdown-body strong{ color: #555555; letter-spacing: 0.5px; text-transform: uppercase; position: relative; z-index: 0; } .markdown-body strong:after{ content: ""; position: absolute; left: 10%; bottom: 0; height: 45%; width: 90%; background-color: #F2D7D9; z-index: -1; } .markdown-body .alert-info{ background-color: #748DA6; border: none; box-shadow: 4px 4px 3px #9CB4CC; color: #FFFFFF; } .markdown-body .mjx-sub{ font-size: 65% !important; } /* Pallete #F2D7D9 #D3CEDF #9CB4CC #748DA6 */ </style> <!-- Probability & Statistics Related --> $$ \newcommand{\prob}[1]{\mathrm{P}(#1)} \newcommand{\probsub}[2]{\mathrm{P}_{#1}(#2)} \newcommand{\func}[2]{\mathrm{#1}(#2)} \newcommand{\funcsub}[3]{\mathrm{#1}_{#2}(#3)} \newcommand{\excp}[1]{\mathrm{E}(#1)} \newcommand{\cdf}[1]{\mathrm{F}(#1)} $$ <!-- Linear Algebra Related --> $$ \require{boldsymbol} \newcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\bmat}[1]{\begin{bmatrix} #1 \end{bmatrix}} \newcommand{\rank}[1]{\mathrm{rank}(#1)} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\trps}[1]{#1^{\moveleft{1.5px}{\raise{2px}{\mathrm{T}}}}} \newcommand{\inv}[1]{#1^{-1}} $$ <!-- General Macros --> $$ \newcommand{\intinf}{\displaystyle\int^{\infty}_{-\infty}} \newcommand{\intlo}[1]{\displaystyle\int^{#1}_{-\infty}} \newcommand{\inthi}[1]{\displaystyle\int^{\infty}_{#1}} \newcommand{\nobj}[3]{#1_1{\;#3\;} #1_2{\;#3} \;\ldots\; {#3\;} #1_#2} \newcommand{\nobjsfx}[4]{#1_1#3{\;#4\;} #1_2#3{\;#4} \;\ldots\; {#4\;} #1_#2#3} $$ + こちらの解答は非公式で個人記録用に作成されており、大学院側に認められたものではありません。正確性についての保証は致しかねます。 + 問題本文は研究科のウェブサイトから見ることができます。 + 満足出来た解答でしたらコメントしていただけると幸いです。 ## 2017年 第三問 ### (1) Find the mean and the CDF ($F(t)$) of the **Exponential Distribution:** $$f(t) = \begin{cases}\lambda e^{-\lambda t} &, t \geq 0\\0 &, t < 0\end{cases}$$ The mean of the probability distribution is: $$ \mu = \intinf tf(t)dt = \int^{\infty}_{0} t\lambda e^{-\lambda t}dt = \left.\displaystyle\frac{-\lambda t - 1}{\lambda}e^{-\lambda t}\right\vert^{t = \infty}_{t = 0} = \frac{1}{\lambda} $$ The CDF of the probabiilty distribution is: $$ \cdf{t} = \intlo{t}f(t)dt = \int^{t}_{0} \lambda e^{-\lambda t}dt = \left. -e^{-\lambda t} \right\vert^{t = t}_{t = 0} = 1 - e^{-\lambda t} $$ ### (2) Prove that $f(t)$ has no memory, a.k.a., for arbritrary $s > 0, t > 0$, $$\prob{T > s + t \mid T > s} = \prob{T > t} $$ + **LHS:** Since $\prob{A \mid B} = \displaystyle\frac{\prob{A \cap B}}{\prob{B}}$, $$ \begin{align} \prob{T > s + t \mid T > s} &= \frac{\prob{(T > s + t) \cap (T > s)}}{\prob{T > s}} = \frac{\prob{T > s + t}}{\prob{T > s}} = \frac{1 - \prob{T \leq s + t}}{1 - \prob{T \leq s}} \\[1ex] &= \frac{1 - \displaystyle\int^{s + t}_{0} \lambda e^(-\lambda t) dt}{1 - \displaystyle\int^{s}_{0} \lambda e^(-\lambda t) dt} = \frac{1 - \left. (-e^{-\lambda t}) \right\vert^{t = s+t}_{t = 0}}{1 - \left. (-e^{-\lambda t}) \right\vert^{t = s}_{t = 0}}\\[1ex] &= \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda(s + t - s)} = e^{-\lambda t} \end{align} $$ + **RHS:** $$ \prob{T > t} = 1 - \prob{T \leq t} = 1 - \displaystyle\int^{t}_{0} \lambda e^{-\lambda t} dt = 1 - \left. (-e^{-\lambda t}) \right\vert^{t = t}_{t = 0} = e^{-\lambda t} $$ Since the two side is same, we can conclude that the distribution has no memory. ### (3) Let there be $n$ student doing a test. Under the following conditions,<br> find the mean and the probability distribution of the minimum finish time. :::info + All students' finish time is under exponential distribution with parameter $\lambda_0$ + All $n$ students' finish time are independent ::: Let $\nobj{X}{n}{,}$ be the random varibales of finish time for each student, and $Y$ be the random variable of the finish time for the fastest student, then: $$ \begin{align} \cdf{y} = \prob{Y \leq y} &= \prob{\min(\nobj{X}{n}{,}) \leq y} \\[1ex] &= 1 - \prob{\nobjsfx{(X}{n}{ > y)}{\cap}} \end{align} $$ Since all $X_i$ are independent, it further becomes: $$ \begin{align} \cdf{y} &= 1 - \prob{X_1 > y} \cdot \prob{X_2 > y} \cdot \ldots \cdot \prob{X_n > y} \\[1ex] &= 1 - \Big[ 1 - \prob{X \leq y} \Big]^n \\[1ex] &= 1 - \Big[ 1 - \cdf{X} \Big]^n = 1 - \Big[ 1 - (1 - e^{-\lambda_0 t}) \Big]^n \\[1ex] &= 1 - e^{-\lambda_0 nt} \end{align} $$ Since for some CDF $\cdf{a}$, the $f(a) = \frac{d\cdf{a}}{da}$, the distribution function $f(y) = \prob{Y = y}$ is: $$ f(y) = \displaystyle\frac{d(1 - e^{-\lambda_0 ny})}{dy} = \lambda_0 ne^{-\lambda_{\scriptscriptstyle{0}} ny} $$ And so the mean of $f(y)$ is: $$ \mu = \inthi{0} \lambda_0nye^{-\lambda_0 ny} dy = \left. \left(\frac{-\lambda_0 ny - 1}{\lambda_0 n}e^{-\lambda_0 ny} \right) \right\vert^{y = \infty}_{y = 0} = 0 + \frac{1}{\lambda_0 n} = \frac{1}{\lambda_0 n} $$ ### (4) Let there be student $A$, $B$ doing a test. Under the following conditions, <br>find the probability that student $A$ finished the test first. :::info + The finish time of student $A$ is under exponential distribution $f_A(t)$ with parameter $\lambda_a$ + The finish time of student $B$ is under exponential distribution $f_B(t)$ with parameter $\lambda_b$ + The finish time of student $A$ and $B$ are independent. ::: Since $A$, $B$ are independent, the joint distribution function $f_{AB}(a, b) = f_A(a)f_B(b).$ To calculate $\prob{A < B}$, simply integrate the joint distribution function over the region $a < b$: $$ \begin{align} \displaystyle \int^{\infty}_{0} \int^{b}_{0} f_{AB}(a, b) dadb &= \int^{\infty}_{0} \int^{b}_{0} \lambda_ae^{-\lambda_a a}\lambda_be^{-\lambda_b b} dadb \\[1ex] &= \int^{\infty}_0 \lambda_be^{-\lambda_bb}\left. (-e^{-\lambda_aa}) \right\vert^{a = b}_{a = 0} db \\[1ex] &= \int^{\infty}_0 \lambda_be^{-\lambda_bb}\left( 1 - e^{-\lambda_ab} \right) db \\[1ex] &= \int^{\infty}_0 \lambda_be^{-\lambda_bb} db - \int^{\infty}_0 \lambda_be^{-(\lambda_a + \lambda_b)b} db \\[1ex] &= \left. -e^{-\lambda_bb} \right\vert^{b = \infty}_{b = 0} - \left. \displaystyle \frac{\lambda_b}{-(\lambda_a + \lambda_b)} e^{-(\lambda_a + \lambda_b)b} \right\vert^{b = \infty}_{b = 0} \\[1ex] &= 1 - \left( \displaystyle\frac{\lambda_b}{\lambda_a + \lambda_b} \right) = \frac{\lambda_a}{\lambda_a + \lambda_b} \end{align} $$ ### (5) Let there be a student $Y$, and other $10$ students $\nobj{X}{{10}}{, }$ doing a test, whose finish time all having exponential distribution. The mean finish time of $Y$ ($\mu_Y$) is $10$ times shorter than all other students. #### Find the probability of student $Y$ finishing first. We know that $10\mu_Y = \mu_{X_1} = \mu_{X_2} = \ldots = \mu_{X_{10}}$, so we can say: $$ \mu_Y = c \\ \mu_{X_1} = \mu_{X_2} = \ldots = \mu_{X_{10}} = 10c $$ For some positive $c$. From (1), we know the mean of a distribution is $\frac{1}{\lambda}$, inducing the density function of $Y$, $X_i$ respectivly are: $$ f_Y(y) = \begin{cases} \displaystyle \frac{e^{-\frac{y}{10c}}}{10c} &, y \geq 0 \\ 0 &, y < 0 \end{cases} \;\;\;\;\;\;\;\;\;\; f_{X_i}(x_i) = \begin{cases} \displaystyle \frac{e^{-\frac{x_i}{c}}}{c} &, x_i \geq 0 \\ 0 &, x_i < 0 \end{cases} $$ Where $x_i, y$ are the finish times. Finishing as first means $\forall i \in [1 .. 10] : y < x_i$, and all $\prob{Y < X_i}$ are independent. Thus using (4), the probability of student $Y$ finishing first is: $$ \begin{align} \prob{\text{Student } Y \text{ is the first}} &= \prob{\min(Y, \nobj{X}{{10}}{, }) = y} \\[1ex] &= \prob{Y < X_1} \cap \prob{Y < X_2} \cap \ldots \cap \prob{Y < X_{10}} \\[1ex] &= \left( \displaystyle\frac{\frac{1}{c}}{\frac{1}{c} + \frac{1}{10c}} \right)^{10} = \left( \frac{10}{11} \right)^{10} \end{align} $$ #### Find the probability of student $Y$ fininshing fourth. Student $Y$ finishing fourth, meaning student $Y$ beated $7$ out of $10$ ordinary students and failed to do so $3$ times — since each *competetions* are independent, this is the boission distribution $b(x; n, p)$ where + The number of success trails $x = 7$ + The total number of trials $n = 10$ + The success rate $p = \frac{10}{11}$. Thus the probability of student $Y$ finished fourth is: $$ b(x; n, p) = \binom{10}{7}\left( \frac{10}{11} \right)^7\left( \frac{1}{11} \right)^3 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \cdot \frac{10^7}{11^7} \cdot \frac{1}{11^3} = \frac{12 \times 10^8}{11^{10}} \approx 0.04625 $$