--- title: "東京大学大学院 情報理工入試過去問(数学)解答・2017年 第一問" tags: u-tokyo, exam --- # 東京大学大学院 情報理工入試過去問(数学)<br><span style="float: right;">―解答・2017年 第一問</span> <style> .markdown-body h1 > span:last-child{ font-size: 18pt; float: right; width: 100%; text-align: right; border-bottom: 1pt #EEE solid; padding-bottom: 5pt; margin-bottom: 5pt } .markdown-body h1{ border: none; } .markdown-body h2{ padding-top: 8px; padding-left: 5px; color: black; background-color: #F2D7D9; z-index: 1; } .markdown-body h3{ padding: 5px 0 5px 5px; background-color: #D3CEDF } .markdown-body h4{ position: relative; line-height: 28pt; padding-left: 5px; color: #FFFFFF; font-size: 13pt; background-color: #9CB4CC; } .markdown-body strong{ color: #555555; letter-spacing: 0.5px; text-transform: uppercase; position: relative; z-index: 0; } .markdown-body strong:after{ content: ""; position: absolute; left: 10%; bottom: 0; height: 45%; width: 90%; background-color: #F2D7D9; z-index: -1; } .markdown-body .alert-info{ background-color: #748DA6; border: none; box-shadow: 4px 4px 3px #9CB4CC; color: #FFFFFF; } .markdown-body .mjx-sub{ font-size: 65% !important; } /* Pallete #F2D7D9 #D3CEDF #9CB4CC #748DA6 */ </style> <!-- Requiring Mathjax Packages --> $$ \require{cancel} $$ <!-- Probability & Statistics Related --> $$ \newcommand{\prob}[1]{\mathrm{P}(#1)} \newcommand{\probsub}[2]{\mathrm{P}_{#1}(#2)} \newcommand{\func}[2]{\mathrm{#1}(#2)} \newcommand{\funcsub}[3]{\mathrm{#1}_{#2}(#3)} \newcommand{\excp}[1]{\mathrm{E}(#1)} \newcommand{\cdf}[1]{\mathrm{F}(#1)} $$ <!-- Linear Algebra Related --> $$ \require{boldsymbol} \newcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\bmat}[1]{\begin{bmatrix} #1 \end{bmatrix}} \newcommand{\vmat}[1]{\begin{vmatrix} #1 \end{vmatrix}} \newcommand{\rank}[1]{\mathrm{rank}(#1)} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\trps}[1]{#1^{\moveleft{1.5px}{\raise{2px}{\mathrm{T}}}}} \newcommand{\inv}[1]{#1^{-1}} $$ <!-- General Macros --> $$ \newcommand{\intinf}{\displaystyle\int^{\infty}_{-\infty}} \newcommand{\intlo}[1]{\displaystyle\int^{#1}_{-\infty}} \newcommand{\inthi}[1]{\displaystyle\int^{\infty}_{#1}} \newcommand{\nobj}[3]{#1_1{\;#3\;} #1_2{\;#3} \;\ldots\; {#3\;} #1_#2} \newcommand{\nobjsfx}[4]{#1_1#3{\;#4\;} #1_2#3{\;#4} \;\ldots\; {#4\;} #1_#2#3} $$ + こちらの解答は非公式で個人記録用に作成されており、大学院側に認められたものではありません。正確性についての保証は致しかねます。 + 問題本文は研究科のウェブサイトから見ることができます。 + 満足出来た解答でしたらコメントしていただけると幸いです。 ## 2017年 第一問 Let there be $x_n, y_n, z_n$ such that: $$ \bmat{x_{n + 1} \\ y_{n + 1} \\ z_{n + 1}} = A\bmat{x_n \\ y_n \\ z_n} $$ With conditions: $$ A = \bmat{ 1 - 2\alpha & \alpha & \alpha \\ \alpha & 1 - \alpha & 0 \\ \alpha & 0 & 1 - \alpha }\;, \;\;\;\;\;\;\;\;\; \begin{cases} 0 \leq \alpha \leq \frac{1}{3} \\ x_0, y_0, z_0, \alpha \in \mathbb{R} \end{cases} $$ ### (1) Represent $x_n + y_n + z_n$ using $x_0,\,y_0$ and $z_0$. Expand the equation, we get: $$ \bmat{x_{n + 1} \\ y_{n + 1} \\ z_{n + 1}} = \bmat{ (1 - 2\alpha)x_n + \alpha y_n + \alpha z_n \\ \alpha x_n + (1 - \alpha)y_n \\ \alpha x_n + (1 - \alpha)z_n } $$ Let $S_n = x_n + y_n + z_n$, we further get: $$ S_n = (1 - 2\alpha + \alpha + \alpha)x_{n - 1} + (\alpha + 1 - \alpha)y_n + (\alpha + 1 - \alpha)z_n = x_{n - 1} + y_{n - 1} + z_{n - 1} = S_{n - 1} $$ Indicating the result, $$ x_n + y_n + z_n = S_n = S_{n - 1} = S_{n - 2} = \ldots = S_0 = x_0 + y_0 + z_0 $$ :::info $A$ is a markov matrix, meaning the sum of each entry in $A^t\vec{x}$ keeps the same as $\vec{x}$ for any $t \in \mathbb{N}$. ::: ### (2) Find the eigenvalues $\lambda_1,\,\lambda_2,\,$ and $\lambda_3$ for $A$, and the corresponding eigenvectors. For any eigenvalue $\lambda$, $\det{\left( A - I\lambda \right)} = 0$. So, $$ \begin{align} \vmat{ 1 - 2\alpha - \lambda & \alpha & \alpha \\ \alpha & 1 - \alpha - \lambda & 0 \\ \alpha & 0 & 1 - \alpha - \lambda } &= \alpha\vmat{\alpha & \alpha \\ 1 - \alpha - \lambda & 0} + (1 - \alpha - \lambda)\vmat{1 - 2\alpha - \lambda & \alpha \\ \alpha & 1 - \alpha - \lambda } \\[1ex] &= -\alpha^2( 1 - \alpha - \lambda) + (1 - \alpha - \lambda)\left[ \lambda^2 + (3\alpha - 2)\lambda + \alpha^2 - 3\alpha + 1 \right] \\[1ex] &= (1 - \alpha - \lambda)\left[ \lambda^2 + (3\alpha - 2)\lambda - 3\alpha + 1 \right] \\[1ex] &= (-\lambda + 1 - \alpha)(\lambda + 3\alpha - 1)(\lambda - 1) = 0 \end{align} $$ So we get $$ \begin{cases} \lambda_1 = 1 - \alpha \\ \lambda_2 = 1 - 3\alpha\\ \lambda_3 = 1 \end{cases} $$ + For $\lambda_1 = 1 - \alpha$, $$ A - I\lambda_1 = \bmat{ -\alpha & \alpha & \alpha \\ \alpha & 0 & 0 \\ \alpha & 0 & 0 } \xrightarrow{\text{elimination }} \bmat{ -\alpha & \alpha & \alpha \\ 0 & \alpha & \alpha \\ 0 & 0 & 0 } $$ So the corresponding eigenvector $v_1 = t_1\bmat{0 \\ -1 \\ 1}, t_1\in\mathbb{R}, t_1 \neq 0$. + For $\lambda_2 = 1 - 3\alpha$, $$ A - I\lambda = \bmat{ \alpha & \alpha & \alpha \\ \alpha & 2\alpha & 0 \\ \alpha & 0 & 2\alpha } \xrightarrow{\text{elimination }} \bmat{ \alpha & \alpha & \alpha \\ 0 & \alpha & -\alpha \\ 0 & 0 & 0 } $$ So the corresponding eigenvector $v_2 = t_2\bmat{-2 \\ 1 \\ 1}, t_2\in\mathbb{R}, t_2 \neq 0$. + For $\lambda_3 = 1$, $$ A - I\lambda = \bmat{ -2\alpha & \alpha & \alpha \\ \alpha & -\alpha & 0 \\ \alpha & 0 & -\alpha } \xrightarrow{\text{elimination }} \bmat{ -2\alpha & \alpha & \alpha \\ 0 & -\frac{\alpha}{2} & \frac{\alpha}{2} \\ 0 & 0 & 0 } $$ So the corresponding eigenvector $v_3 = t_3\bmat{1 \\ 1 \\ 1}, t_3\in\mathbb{R}, t_3 \neq 0$. ### (3) Represent matrix $A$ using $\lambda_1,\,\lambda_2,\,\lambda_3,\,v_1,\,v_2$ and $v_3$. According to the properties of eigenvalue and eigenvectors, we know for any eigenvalue $\lambda_i$ of $A$ and its correspionding eigenvector $v_i$, $$ Av_i = \lambda_iv_i $$ Which induces $AU = U\Lambda$, where $$ U = \bmat{ | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \\ }, \Lambda = \bmat{ \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 } $$ Since $\det{U} = \vmat{0 & -2 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1} = -5$, $U$ is invertible, concluding in: $$ A = U\Lambda\inv{U} $$ ### (4) Represent $\bmat{x_n \\ y_n \\ z_n}$ using $x_0,\,y_0,\,z_0$ and $\alpha$. $$ \bmat{x_n \\ y_n \\ z_n} = A\bmat{x_{n - 1} \\ y_{n - 1} \\ z_{n - 1}} = A^2\bmat{x_{n - 2} \\ y_{n - 2} \\ z_{n - 2}} = \cdots = A^n\bmat{x_0 \\ y_0 \\ z_0} $$ Since $A$ can be expressed as $U\Lambda\inv{U}$, $$ A^n = (U\Lambda\inv{U})^n = U\Lambda\cancel{\inv{U}U}\Lambda\cancel{\inv{U} }\ldots \cancel{ U}\Lambda\inv{U} = U\Lambda^n\inv{U} $$ Thus, $$\begin{align} \bmat{x_n \\ y_n \\ z_n} &= U\Lambda^n\inv{U}\bmat{x_0 \\ y_0 \\ z_0} \\[1ex] &= \bmat{0 & -2 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1} \bmat{\lambda_1^n & 0 & 0 \\ 0 & \lambda_2^n & 0 \\ 0 & 0 & \lambda_3^n} \frac{1}{6}\bmat{0 & -3 & 3 \\ -2 & 1 & 1 \\ 2 & 2 & 2} \bmat{x_0 \\ y_0 \\ z_0} \\ &= \frac{1}{6}\bmat{ \left[ 2+4(1 - 3\alpha)^n \right]x_0 + \left[ 2-2(1-3\alpha)^n \right]y_0 + \left[ 2-2(1-3\alpha)^n \right]z_0 \\ \left[ 2-2(1 - 3\alpha)^n \right]x_0 + \left[ 2+3(1-\alpha)^n+(1-3\alpha)^n \right]y_0 + \left[ 2-3(1-\alpha)^n+(1-3\alpha)^n \right]z_0 \\ \left[ 2-2(1 - 3\alpha)^n \right]x_0 + \left[ 2-3(1-\alpha)^n+(1-3\alpha)^n \right]y_0 + \left[ 2+3(1-\alpha)^n+(1-3\alpha)^n \right]z_0 } \end{align} $$ ### (5) Find $\displaystyle\lim_{n \rightarrow \infty} \bmat{x_n \\ y_n \\ z_n}$ Since $0 < \alpha < \frac{1}{3}$, we know $$ \displaystyle\lim_{n \rightarrow \infty}(1 - \alpha)^n = 0 \\ \displaystyle\lim_{n \rightarrow \infty}(1 - 3\alpha)^n = 0 \\ $$ So: $$ \displaystyle\lim_{n \rightarrow \infty} \bmat{x_n \\ y_n \\ z_n} = \frac{1}{6}\bmat{ 2x_0 + 2y_0 + 2z_0\\ 2x_0 + 2y_0 + 2z_0\\ 2x_0 + 2y_0 + 2z_0 } = \frac{1}{3}\bmat{x_0 + y_0 + z_0 \\ x_0 + y_0 + z_0 \\ x_0 + y_0 + z_0} $$ ### (6) Find min/max value of the function $f(x_0, y_0, z_0) = \frac{\bmat{x_n & y_n & z_n}\bmat{x_{n + 1} \\ y_{n + 1} \\ z_{n + 1}}}{\bmat{x_n & y_n & z_n}\bmat{x_n \\ y_n \\ z_n}}$ :::success This question is not yet solved by be :( ::: Let $U^*$ be the matrix whose columns are eigenvectors of $A$ with unit length, and $\vec{x} = \bmat{x_0 \\ y_0 \\ z_0}$. + Since $U^*$ is a orthogonal matrix, $\trps{(U^*)} = \inv{(U^*)}$. + Since $\Lambda^n$ is diagonal, $\trps{(\Lambda^n)} = \Lambda^n$. Then, $$ \begin{align} \bmat{x_n & y_n & z_n}\bmat{x_n \\ y_n \\ z_n} &= \trps{(A^n\vec{x})}(A^n\vec{x}) = \trps{\vec{x}}\trps{(A^n)}A^n\vec{x} \\[1ex] &= \trps{\vec{x}}\trps{((U^*)\Lambda^n\inv{(U^*)})}((U^*)\Lambda^n\inv{(U^*)})\vec{x} \\ &= \trps{\vec{x}} \trps{(\inv{(U^*)})}\trps{(\Lambda_n)}\trps{(U^*)}(U^*)\Lambda^n\inv{(U^*)} \vec{x} \\ &= \trps{\vec{x}} U^*\Lambda^{2n} \trps{(U^*)} \vec{x} \\ &= \trps{\vec{x}}A^{2n}\vec{x} \end{align} $$ And simularily, $\bmat{x_n & y_n & z_n}\bmat{x_{n + 1} \\ y_{n + 1} \\ z_{n + 1}} = \trps{\vec{x}}A^{2n+1}\vec{x}$ Since $\vec{x}$ is able to be represented by combinations of its eigenvectors, we can say for some $k_1, k_2, k_3 \in \mathbb{R}$ and $n \in \mathbb{N}$: $$ A^n\vec{x} = k_1\lambda_1^n\vec{x}_1 + k_2\lambda_2^n\vec{x}_2 + k_3\lambda_3^n\vec{x}_3 $$ Thus we can instead write $f(x_0, y_0, z_0)$ as: $$ \begin{align} f(x_0, y_0, z_0) &= \frac{\trps{\left( k_1\lambda_1\vec{x}_1 + k_2\lambda_2\vec{x}_2 + k_3\lambda_3\vec{x}_3 \right)}\left( k_1\lambda_1^{2n+1}\vec{x}_1 + k_2\lambda_2^{2n+1}\vec{x}_2 + k_3\lambda_3^{2n+1}\vec{x}_3 \right)}{\trps{\left( k_1\lambda_1\vec{x}_1 + k_2\lambda_2\vec{x}_2 + k_3\lambda_3\vec{x}_3 \right)}\left( k_1\lambda_1^{2n}\vec{x}_1 + k_2\lambda_2^{2n}\vec{x}_2 + k_3\lambda_3^{2n}\vec{x}_3 \right)} \\[1ex] &= \frac{k_1^2\lambda_1^{2n+2}\|\vec{x}_1\|^2+k_2^2\lambda_2^{2n+2}\|\vec{x}_2\|^2+k_3^2\lambda_3^{2n+2}\|\vec{x}_3\|^2}{k_1^2\lambda_1^{2n+1}\|\vec{x}_1\|^2+k_2^2\lambda_2^{2n+1}\|\vec{x}_2\|^2+k_3^2\lambda_3^{2n+1}\|\vec{x}_3\|^2} \\[1ex] &= \frac{c_1(1 - \alpha) + c_2(1 - 3\alpha) + c_3}{c_1 + c_2 + c_3} \end{align} $$ Where $$ c_1 = k_1^2\lambda_1^{2n+1}\|\vec{x_1}\|^2 = 2k_1^2\lambda_1^{2n+1} \geq 0\\[1ex] c_2 = k_2^2\lambda_2^{2n+1}\|\vec{x_2}\|^2 = 6k_2^2\lambda_2^{2n+1} \geq 0\\[1ex] c_3 = k_3^2\lambda_3^{2n+1}\|\vec{x_3}\|^2 = 3k_3^2 \geq 0 $$ + Since $0 < 1 - \alpha < 1$ and $0 < 1 - 3\alpha < 1$, $$ \begin{cases} |c_1(1 - \alpha) + c_2(1 - 3\alpha)|<|c_1 + c_2| \\[1ex] (c_1(1 - \alpha) + c_2(1 - 3\alpha) + c_3) \cdot (c_1 + c_2 + c_3) > 0 \end{cases} $$ Implying the maximum is when $c_1(1 - \alpha) + c_2(1 - 3\alpha) = 0$, then $f(x_0, y_0, z_0) = 1$, and the minimum when $c_3 = 0$ and ?