# Data Science Math Skill-Week 1 ###### tags: `note`,`math`,`Data Science Math Skill` # Sets and what they good for ## Sets - Basics and Vocabulary ### Set Def: A set is a collection of things. A set is made up of elements. Example: * $A=\{1,2,-2,7\}$ * $E=\{Apple,Monkey,Daniel\}$ ### in Example: * $2\in A$ * 2 is elemrnt of A. * $-3\in A$ * 3 is elemrnt of A. * $-8\notin A$ * -8 isn't elemrnt of A. ### Cardinality Def: Size of a size of set. Numbers of elements in it Example: * $|A|=4$ * $|E|=3$ ### Intersect & Union $A=\{1,2,-3,7\},B=\{2,8,-3,10\},D=\{5,10\}$ #### Intersect Def: $A\cap B=\{x:x\in A\text{ and } x\in B\}$ Example: * $A\cap B=\{2,-3\}\rightarrow$ A intersect B * $B\cap B=\{10\}\rightarrow$ B intersect D * $A\cap B=\emptyset\rightarrow$ A intersect D ($|\emptyset |=0$) #### Union Def: $A\cap B=\{x:x\in A\text{ or } x\in B\}$ Example: * $A\cup B=\{1,2,-3,7,8,10\}\rightarrow$ $\{x:x\in A\text{ or } x\in B\}$ * $A\cup D=\{1,2,3,7,5,10\}\rightarrow$ $\{x:x\in A\text{ or } x\in D\}$ ## Sets - Medical Testing Example ### theory + Medical Testings **VBS- X=set of people in a clinical trial** $S=\{x\in X|X\text{ has VBS }\}$ $H=\{x\in X|X\text{ doesn't have VBS }\}$ $X=S\cup H$ $S\cup H=\emptyset$ $P=\{x\in X|X\text{ tests positive for VBS }\}$ $N=\{x\in X|X\text{ tests negative for VBS }\}$ $P\cup N=X$ $P\cap N=\emptyset$ * $S\cap P\rightarrow \text{ true positives}$ * $H\cap N\rightarrow \text{ true negatives}$ * $S\cap N\rightarrow \text{ false negatives}$ * $H\cap P\rightarrow \text{ false positives}$ ### Rate $\frac{|S|}{|X|}=\text{ propotion of people in this study who do have VBS}$ $\frac{|S|}{|X|}=\text{ propotion of people in this study without VBS}$ * $\frac{|S\cap P|}{|S|}=\text{ true positive rate}$ * $\frac{|H\cap P|}{|H|}=\text{ flase positive rate}$ * $\frac{|S\cap N|}{|S|}=\text{ flase negative rate}$ * $\frac{|H\cap N|}{|H|}=\text{ true positive rate}$ ## Sets - Venn Diagrams $A=\{1,5,10,2\},|A|=4$ ![](https://i.imgur.com/C1uJ6hD.jpg) $A=\{1,5,10,2\},B=\{5,-7,10,3\}$![](https://i.imgur.com/Ozngpqq.jpg) ### Inclusion-exclusion formula $|A\cup B|=|A|+|B|-|A\cap B|=4+4-2=6$ Example(Medical testing): ![](https://i.imgur.com/yQ0wrc3.jpg) # The infinite world of Real Numbers ## Numbers - The Real Number Line ### $\Bbb R$ $\Bbb R=\text{ the real numbers}$ ![](https://i.imgur.com/ZSC6bPx.jpg) * $\Bbb Z=\{...-3,-2,-1,0,1,2,3...\}$ * $\Bbb Q=\text{ rational numbers ( numbers written as ratio)}$ * $\Bbb N=\text{ Natural numbers (all positive integers starting from 1. (1,2,3....inf)}$ ![](https://i.imgur.com/Siavonq.png) ### Distence Def: absolute value of a real number X,|X|is the distance from X to 0. example: ![](https://i.imgur.com/aL44PvQ.jpg) #### General rule >for any$X\in\Bbb R$ $|X|=\begin{Bmatrix} \text{ X=if X is non-negative}\\ \text{ -X=if X is negative}\\ \end{Bmatrix}$ #### check $|8.7|=8.7$ $|-10|=-(-10)$ ## Numbers - Less-than and Greater-than ### Inequalities Basic ideas * $a\lt b$ * $a\lt b \text{ a less than b means a is to the left of b on }\Bbb R$ * $c\gt d$ * $c\gt d \text{ c greater than d means c is to the right of d on }\Bbb R$ $A\lt b \iff A\gt b$ * $x\le y$ * $x\lt y \text{ x less than or equal to y}$ * $z\ge w$ * $z\lt w \text{ z greater than or equal to w}$ * $e\lt\lt f$ * $e\lt\lt f\text{ means e is much much less than on f}$ ## Numbers - Algebra With Inequalities ### How? ### plus Rule: if a=b,than a+c=b+c example: * (1) 1. $4=4$ 2. $4+3=4+3$ * (2) 1. $x+3=10$ 2. $x+3-3=10-3$ 3. $x=7$ ### multiply Rule: if a,b,c are numbers,and $c\neq 0$,and a=b then $c\times a=c\times b$ example: * (1) 1. $4=4$ 2. $2\times 4=2\times 4$ 3. 8=8 * (2) 1. $4=4$ 2. $-3\times 4=-3\times 4$ 3. $-12=-12$ --- ### plus(Inequalities) Rule: If $a\lt b$ then $a+c\lt b+c$ example: * (1) 1. $4\lt 7$ 2. $4+2\lt 7+2$ 3. $6\lt9$ * (2) 1. $4\lt 7$ 2. $4-1\lt 7-1$ 3. $3\lt6$ ### multiply(Inequalities) Rule: Suppose $a\lt b$ if $c\gt 0$ than $a\times c\lt b\times c$ else if $c\lt 0$ than $a\times c\gt b\times c$ else if $c=0$ than $a\times c=b\times c$ example: * (1) 1. $5\lt 8$ 2. $5\times 3\lt 8\times 3$ 3. $15\lt24$ * (2) 1. $4\lt 7$ 2. $-1\times 4\lt -1\times 7$ 3. $-4\gt -7$ ## Numbers - Intervals and Interval Notation * $(a,b)=\{x\in\Bbb R :a\lt x\lt b\}$ * $[a,b]=\{x\in\Bbb R :a\le x\le b\}$ * $[a,b)=\{x\in\Bbb R :a\le x\lt b\}$ * $[a,\infty )=\{x\in\Bbb R :x\ge a\}$ * $(-\infty,b )=\{x\in\Bbb R :x\lt b\}$ {%hackmd 2uXXCExjQN-3m0TM_k8pQg %}