# Diffusion-based Virtual Try-On Methods - [StableVITON : Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On](https://arxiv.org/pdf/2312.01725) - [IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild](https://arxiv.org/pdf/2403.05139) - [DCI-VTON : Taming the Power of Diffusion Models for High-Quality Virtual Try-On with Appearance Flow](https://arxiv.org/pdf/2308.06101) - [LaDI-VTON : Latent Diffusion Textual-Inversion Enhanced Virtual Try-On](https://arxiv.org/pdf/2305.13501) - [OOTDiffusion : Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on](https://arxiv.org/pdf/2403.01779) # Components Used in OOTDiffusion ## OpenPose - [Research Paper : Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields](https://arxiv.org/pdf/1812.08008) - [Openpose Paper Summary](https://towardsdatascience.com/openpose-research-paper-summary-realtime-multi-person-2d-pose-estimation-3563a4d7e66) ## U-Net - [Video Summary](https://youtu.be/NhdzGfB1q74?si=6SsScwlFgJUBmKU1) - [Research Paper : U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/pdf/1505.04597) - [UNet Architecture Explained (Blog)](https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47) ## VAE (Variational Autoencoder) - [Video Summary - CodeEmporium](https://youtu.be/fcvYpzHmhvA?si=Gw1sT3wqzgdmVc0B) - [Video Summary - Arxiv Insights](https://youtu.be/9zKuYvjFFS8?si=u4AJIM8PUtAUzh5B) - [Blog Post - Understanding Variational Autoencoders](https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73) - [Maths behind the VAE](https://lilianweng.github.io/posts/2018-08-12-vae/) ## Attention Mechanism - [Attention Explained - StatQuest](https://youtu.be/PSs6nxngL6k?si=qMLZq8OTv8mZuJQj) - [Cross Attention Mech](https://youtu.be/aw3H-wPuRcw?si=BZpAN_qRXnNrjlcn) ## Dropout Regularization - [Neural Dropout](https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9)