--- tags: linux2022 --- # Quiz 1 ## 1. Two Sum ### Initialize a hash map of size $2^{bits}$ ```c= #define MAP_HASH_SIZE(bits) (1 << bits) map_t *map_init(int bits) { map_t *map = malloc(sizeof(map_t)); if (!map) return NULL; map->bits = bits; map->ht = malloc(sizeof(struct hlist_head) * MAP_HASH_SIZE(map->bits)); if (map->ht) { for (int i = 0; i < MAP_HASH_SIZE(map->bits); i++) (map->ht)[i].first = NULL; } else { free(map); map = NULL; } return map; } ``` ### Define hash key container The golden ratio for 32 bits and 64 bits is defined as followed in [tools/include/linux/hash.h](https://github.com/torvalds/linux/blob/master/tools/include/linux/hash.h) It's actually $2^{32}$ and $2^{64}$ divided by $\phi$ respectively. Its the magic number where allows a optimal element spreading across buckets in hash tables. ```c= struct hash_key { int key; void *data; struct hlist_node node; }; #define container_of(ptr, type, member) \ ({ \ void *__mptr = (void *) (ptr); \ ((type *) (__mptr - offsetof(type, member))); \ }) #define GOLDEN_RATIO_32 0x61C88647 static inline unsigned int hash(unsigned int val, unsigned int bits) { /* High bits are more random, so use them. */ return (val * GOLDEN_RATIO_32) >> (32 - bits); } ``` ### Find key and get_value ```c= static struct hash_key *find_key(map_t *map, int key) { struct hlist_head *head = &(map->ht)[hash(key, map->bits)]; for (struct hlist_node *p = head->first; p; p = p->next) { struct hash_key *kn = container_of(p, struct hash_key, node); if (kn->key == key) return kn; } return NULL; } void *map_get(map_t *map, int key) { struct hash_key *kn = find_key(map, key); return kn ? kn->data : NULL; } ``` ### Add hash key ```c= void map_add(map_t *map, int key, void *data) { struct hash_key *kn = find_key(map, key); if (kn) return; kn = malloc(sizeof(struct hash_key)); kn->key = key, kn->data = data; struct hlist_head *h = &map->ht[hash(key, map->bits)]; struct hlist_node *n = &kn->node, *first = h->first; AAA;//n->next = first if (first) first->pprev = &n->next; h->first = n; BBB;//n->prev = &h->first } ``` - If key is already in hash map return. - If not try to allocate a memory for the new hash key (here it doesn't check if memory is allocated or not ) - Once the hask key is initialized we want to insert it into hashmap ```graphviz digraph "hash list" { node [shape=record]; n [label="n|{next|prev}"]; kn [label="kn | {key|data|{next|pprev}}"]; } ``` ```graphviz digraph "hash list" { node [shape=record]; rankdir=LR; a [label=" map-\>ht | {[0] | [0].first } | {[1] | [1].first } | {[2] | <2>[2].first } | ...}"]; } ``` #13: Inserts `kn` before `first` (`first` can be NULL if there are no other keys) #15: Points `first` pprev back to `kn` if it is non-NULL #16/17: Adjust the pointer between `kn` and hashed location. - Answer: AAA = `n->next = first` BBB = `n->prev = &h->first` ### Delete and free memory ```c= void map_deinit(map_t *map) { if (!map) return; for (int i = 0; i < MAP_HASH_SIZE(map->bits); i++) { struct hlist_head *head = &map->ht[i]; for (struct hlist_node *p = head->first; p;) { struct hash_key *kn = container_of(p, struct hash_key, node); struct hlist_node *n = p; p = p->next; if (!n->pprev) /* unhashed|what causes this conditoin?*/ goto bail; // move to next node struct hlist_node *next = n->next, **pprev = n->pprev; *pprev = next; if (next) next->pprev = pprev; n->next = NULL, n->pprev = NULL; bail: free(kn->data); free(kn); } } free(map); } ``` ### Two sum implementation using hash map ```c= int *twoSum(int *nums, int numsSize, int target, int *returnSize) { map_t *map = map_init(10); *returnSize = 0; int *ret = malloc(sizeof(int) * 2); if (!ret) goto bail; for (int i = 0; i < numsSize; i++) { // find the complement of the current value int *p = map_get(map, target - nums[i]); if (p) { /* found */ ret[0] = i, ret[1] = *p; *returnSize = 2; break; } // if not found add it to hash table p = malloc(sizeof(int)); *p = i; map_add(map, nums[i], p); } bail: map_deinit(map); return ret; } ``` Reference: [Golden ratio](https://stackoverflow.com/questions/38994306/what-is-the-meaning-of-0x61c88647-constant-in-threadlocal-java) ## 2 ```c= #include <stddef.h> struct ListNode { int val; struct ListNode *next; }; struct ListNode *deleteDuplicates(struct ListNode *head) { if (!head) return NULL; if (COND1) { /* Remove all duplicate numbers */ while (COND2) head = head->next; return deleteDuplicates(head->next); } head->next = deleteDuplicates(head->next); return head; } ``` ## 3 ```c= #include <stdio.h> #include <stdlib.h> #include "list.h" typedef struct { int capacity, count; struct list_head dhead, hheads[]; } LRUCache; typedef struct { int key, value; struct list_head hlink, dlink; } LRUNode; LRUCache *lRUCacheCreate(int capacity) { LRUCache *obj = malloc(sizeof(*obj) + capacity * sizeof(struct list_head)); obj->count = 0; obj->capacity = capacity; INIT_LIST_HEAD(&obj->dhead); for (int i = 0; i < capacity; i++) INIT_LIST_HEAD(&obj->hheads[i]); return obj; } void lRUCacheFree(LRUCache *obj) { LRUNode *lru, *n; MMM1 (lru, n, &obj->dhead, dlink) { list_del(&lru->dlink); free(lru); } free(obj); } int lRUCacheGet(LRUCache *obj, int key) { LRUNode *lru; int hash = key % obj->capacity; MMM2 (lru, &obj->hheads[hash], hlink) { if (lru->key == key) { list_move(&lru->dlink, &obj->dhead); return lru->value; } } return -1; } void lRUCachePut(LRUCache *obj, int key, int value) { LRUNode *lru; int hash = key % obj->capacity; MMM3 (lru, &obj->hheads[hash], hlink) { if (lru->key == key) { list_move(&lru->dlink, &obj->dhead); lru->value = value; return; } } if (obj->count == obj->capacity) { lru = MMM4(&obj->dhead, LRUNode, dlink); list_del(&lru->dlink); list_del(&lru->hlink); } else { lru = malloc(sizeof(LRUNode)); obj->count++; } lru->key = key; list_add(&lru->dlink, &obj->dhead); list_add(&lru->hlink, &obj->hheads[hash]); lru->value = value; } ``` ## 4 ```c= #include <stdio.h> #include <stdlib.h> #include "list.h" struct seq_node { int num; struct list_head link; }; static struct seq_node *find(int num, int size, struct list_head *heads) { struct seq_node *node; int hash = num < 0 ? -num % size : num % size; list_for_each_entry (node, &heads[hash], link) { if (node->num == num) return node; } return NULL; } int longestConsecutive(int *nums, int n_size) { int hash, length = 0; struct seq_node *node; struct list_head *heads = malloc(n_size * sizeof(*heads)); for (int i = 0; i < n_size; i++) INIT_LIST_HEAD(&heads[i]); for (int i = 0; i < n_size; i++) { if (!find(nums[i], n_size, heads)) { hash = nums[i] < 0 ? -nums[i] % n_size : nums[i] % n_size; node = malloc(sizeof(*node)); node->num = nums[i]; list_add(&node->link, &heads[hash]); } } for (int i = 0; i < n_size; i++) { int len = 0; int num; node = find(nums[i], n_size, heads); while (node) { len++; num = node->num; list_del(&node->link); int left = num, right = num; while ((node = find(LLL, n_size, heads))) { len++; list_del(&node->link); } while ((node = find(RRR, n_size, heads))) { len++; list_del(&node->link); } length = len > length ? len : length; } } return length; } ```