Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: green; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: indigo; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: yellow; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey on the exam I got number 2 wrong 😭.Did you get it right if so can you help me? Its the question using the limit definition of derivative. </div></div> <div><div class="alert blue"> Yeah!😅 I can help you so for part a.) all what was being asked is what is the limit definition of the derivative f'(x) of a function f(x). Basically the question was asking dor the formula.Do you rememeber what it is? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I think I remember. </div></div> <div><img class="left"/><div class="alert gray"> is it $lim_{h→0}\ \frac{f\left(x-h\right)+f\left(x\right)}{h}$ ? </div></div> <div><div class="alert blue"> No not quite you have you signs mixed up the limit defination of the derivative is $lim_{h→0}\ \frac{f\left(x+h\right)-f\left(x\right)}{h}$. Here lets try an example: $f(x)=x^2-2x$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh okay so for part b.) do we plug in the function $x^2-2x$ into $lim_{h→0}\ \frac{f\left(x+h\right)-f\left(x\right)}{h}$ </div></div> <div><img class="left"/><div class="alert gray"> Like this $lim_{h→0}\ \frac{f\left(x^2-2x+h\right)-f\left(x^2-2x\right)}{h}$ ?😕 </div></div> <div><div class="alert blue"> No you want to plug in (x+h) in to the function.Let me show you how to do the problem: ![](https://i.imgur.com/hKoqoSE.jpg) </div><img class="right"/></div> <div><div class="alert blue"> Here's how to do a problem like number 2 on the exam.This looks like a lot,but I organized it in color and steps to make it easier for you. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Omg‼️ Thank you this is helpful let me try to do one on my own.😅 </div></div> <div><div class="alert blue"> No problem just text me if you have any questions . </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.