數學
台漢 | 台羅 | 英語 |
---|---|---|
關係式 | kuan-hē-sik | relation |
數學式 | sòo-ha̍k-sik | expression |
公式 | kong-sik | formula |
恆等式 | hîng-tíng-sik | identity |
定義 | tīng-gī | definition |
法則 | huat-tsik | rule |
定律 | tīng-lu̍t | law |
原理 | guân-lí | principle |
公理 | kong-lí | axiom postulate |
定理 | tīng-lí | theorem |
命題 | bīng-tê | proposition |
補題 | póo-tê | lemma |
系理 | hē-lí | corollary |
推想 臆說 |
tshui-sióng ik-suat |
conjecture |
paradox | ||
條件 | tiâu-kiānn | condition |
結論 | kiat-lūn | conclusion |
推論 | tshui-lūn | derive |
證明 | prove, verify, show | |
算、求 | calculate,estimate | |
解 | solve | |
generalization | ||
in general | ||
specifically | ||
case |
台漢 | 台羅 | 英語 |
---|---|---|
平平零 | pênn-pênn lîng | vanish |
非零的 | hui-lîng ê | nonvanishing |
平凡的 | pîng-huân ê | trivial |
非平凡的 | hui-pîng-huang ê | non-trivial |
台漢 | 台羅 | 英語 |
---|---|---|
Let… | ||
Set… | ||
Put… | ||
differentiate | ||
integrate | ||
combine | ||
共 A 式橐入去 B 式(內底) | kā A sik lok ji̍p-ì B sik (lāi-té) | substitute Eq. A in Eq. B put Eq. A in Eq. B |
其中 | kî-tiong | …, where… |
重寫 | tîng-siá | rewrite |
寫現現 | siá hiān-hiān | write explicitly |
是寫做按呢: | sī siá tsò án-ne: | is given by |
形式是按呢: | hîng-sik sī án-ne: | is of the form… |
台漢 | 台羅 | 英語 |
---|---|---|
設使 | siat-sú | assuming (that)…, suppose (that)… |
佇……的都合 | tī … ê too-ha̍p | provided (that)… |
根據 | kin-kì | according to |
result from | ||
造成、致使 | tsō-sîng, tì-sú | result in lead to |
因為 | in-uī | because, since |
所致、所擺 | sóo-tì, sóo-pái | hence, therfore |
(就)得着 | (tiō) tit-tio̍h | we obtain … |
就知 | tiō tsai | we have … |
(就)得着 | (tiō) tit-tio̍h | we find … |
(就)得着 | (tiō) tit-tio̍h | we obtain … |
結果是 | kiat-kó sī | it follows that … |
it can be seen that… | ||
是誠實--兮 | sī tsiânn-si̍t–ê | is true |
有成立 | ū sîng-li̍p | stands |
A 佮 B 會合 | A kah B ē ha̍h | A satisfies B |
A 佮 B 袂合 | A kah B bē ha̍h | A does not satisfy B |
Q.E.D. |
台漢 | 台羅 | 英語 |
---|---|---|
Clearly… | ||
It is self-evident that… | ||
It can be easily shown that… | ||
… does not warrant a proof. | ||
證明留予恁練習 | The proof is left as an exercise. |