# 7/22~29 Progress ## Thesis 3.3 Supervision in Disentanglement ![image](https://hackmd.io/_uploads/Sk62BdAuA.png) ## Experiment ![image](https://hackmd.io/_uploads/SkMLRPi_A.png) ### analysis - The accuracy is higher while Rouge-L and Bleu scores are lower when I add the continuous classifier. - The contrastive method being used is crucial to the performance. - The accuracy is not the crucial point for the final response answer. ## Human evaluation - Ongoing ## Formulation Objective: $$ p(y,x_e|x) = p(y|x,x_e) \cdot p(x_{e}|x) $$ To find $p(y∣x)$, marginalize over all possible values of $x_e$: $$ p(y \mid x)=\int p(y, x_e \mid x) d x_e =\int p(y \mid x_e, x) p(x_e \mid x) d x_e $$ Assume S is soft prompt produced by the transformer encoder $f_\theta$ and the MLP layers $f_\phi$ : $$ S = f_\psi(f_\theta(x)) $$ Therefore, we rewrite the conditional probability: $$ \begin{aligned} & p(y \mid x)=\int p(y \mid S, x) p(S \mid x) d S \\ & =\int p(y \mid S, x) \delta\left(S-f_\psi\left(f_\theta(x)\right)\right) d S \\ & =p\left(y \mid f_\psi\left(f_\theta(x)\right), x\right) \\ & =\prod_{t=1}^T p\left(y_t \mid y_{<t}, x, f_\psi\left(f_\theta(x)\right)\right) \\ &=\exp \left(\sum_{t=1}^T \log p\left(y_t \mid y_{<t}, x, f_\psi\left(f_\theta(x)\right)\right)\right) \\ \end{aligned} $$ $$ \mathcal{L}_{g}(x,y;\theta,\psi)=-\sum_{t=0}^T \log p_{\theta,\psi}(y_t|y_{<t},x,S) $$ - Discrete Classifier $$ \mathbb{E}_{p(x,x_e)} [p(x_e|x)] = - \log p_{\theta, \phi}(x_e|x) $$ $$ \mathcal{L}_e(x,x_e;\theta,\phi)=-\sum_{i=0}^N \log p_{\theta,\phi}(x_{e_i}|x_i) $$ - Continuous Classifier $$ \begin{aligned} & p\left(\hat{x}_e \mid x_e\right)=\frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left(-\frac{\left(\hat{x}_e-{x}_e\right)^2}{2 \sigma^2}\right) \\ & \quad \text { accuracy }=\frac{1}{N} \sum_{i=1}^N \mathbb{I}\left(\left|\hat{x_{e_i}}-x_{e_i}\right|<\epsilon\right) \end{aligned} $$ $\mathbb{I}$ : indicator function ## Visualization ![image](https://hackmd.io/_uploads/rJMAF_aHC.png) ![image](https://hackmd.io/_uploads/Hk93x2idA.png) ceclg_c_v2 ![ceclg_c_400_A_D](https://hackmd.io/_uploads/SyYJZ2sOR.png) ![ceclg_c_400_V_A](https://hackmd.io/_uploads/B1tkbnouR.png) ![ceclg_c_400_V_D](https://hackmd.io/_uploads/HyFyb2sOC.png) --- ceclg_con_v1 ![ceclg_c_2000_V_A_D](https://hackmd.io/_uploads/SkJLGx3dC.png) ![ceclg_c_2000_V_A](https://hackmd.io/_uploads/HkkUzg2_C.png) ![ceclg_c_2000_V_D](https://hackmd.io/_uploads/SJ1Lzl3OC.png) ![ceclg_c_2000_A_D](https://hackmd.io/_uploads/BJyLGl3uA.png) --- discrete ![discrete_labels](https://hackmd.io/_uploads/S1-xtgn_R.png)