--- breaks: False --- {%hackmd theme-dark %} # Notes on: Random Matrices @ HSE 2019 ## Structure of the lectures I missed, based on problem sets ### Problemset 3 - Bernstein-type bounds - $|\mathbb{E}[(X-\mu)^k]|\leq \frac{k!}{2}\sigma^2 b^{k-2},~k\geq3$ - Equiv: MGF bound, $\mathbb{E} e^{\lambda(X-\mu)} \leq \frac{\lambda^2\sigma^2}{2(1-|\lambda|b)},~|\lambda|\leq\frac1b$ ### Problemset 4 - $\varepsilon$-net argument ### Problemset 5 - http://iosipoi.ru/rmt/PS5.pdf - $X_1, \ldots, X_n\in\mathbb{R}^d$ highdim, sampled from unknown distrib - $\Sigma = \mathbb{E} X_iX_i^\top,~i=1,\ldots,n$ cov mat - $\hat\Sigma= \frac1n \sum_i X_iX_i^\top$, $d\times d$ - Unbiased - Law of large numbers: converges a.s. - Comparison method - Gaussian comparison ineqs - Bound on the expected value of operator norm of $X$ (with Gaussian columns?) ### Problemset 6 - http://iosipoi.ru/rmt/PS6.pdf - Catalan Numbers - Equivalent combinatorics problems leading to Catalan numbers: - Balanced paranthesis - Dyck paths of $n$ up-steps and $n$ down-steps - Rooted binary trees of $n$ internal nodes - Rooted trees on $n$ edges - Recursive def: $C_{n+1} = \sum_{j=0}^n C_j C_{n-j}$ - Solution: $C_n = \frac{1}{n+1}\begin{pmatrix}2n\\n\end{pmatrix}$ - Derivation hints: - $f$ -- generating function of $C$ - $f(z) = C_0 + z(f(z))^2$ - $(1+x)^\alpha = \sum_{n=0}^\infty x^n = \sum_{n=0}^\infty \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n$ - Wigner's semicircular law - $W_n = (w_{ij})_{1\leq i,j \leq n}$ an rmatrix - $W_n$ symmetric - Conditioned on symmetricity, $w_{ij}$ are independent - $\mathbb{E}w_{ij}=0$ - $w_{ii}$ iid with $\mathbb{E}w_{ii}^2 <\infty$ - $w_{ij},~i<j$ iid with $\mathbb{E}w_{ij} = 1$ - Also assume moments exist and are bounded - Gaussian Orthogonal Ensemble - Scaled matrix: $\overline{W}_n = \frac{1}{\sqrt{n}}W_n$. - Empircal spectral distribution (ESD) of $\overline{W}_n$ - $\lambda_1(\overline{W}_n) \leq \cdots \leq \lambda_n(\overline{W}_n)$ - $\mu_{\overline{W}_n}(x) = \frac1n \sum_{j=1}^n\delta_{\lambda_j(\overline{W}_n)}(x)$ - Atomic measure - Limit may be cont - Measure is random, as is the matrix and its eigenvalues - Expected ESD of normalized Wigner mat tends to semicircular law - $\mu_{\mathrm{sc}}(x) = \frac{1}{2\pi}\sqrt{4 - x^2}1_{|x|\leq 2}(x)$ - Method of moments - Families of distributions that are defined by their sets of moments - Convergences - Weak: $P_n\to P$ in distribution, if $\lim_n F_n(x) \to F(x)$ for every $x$ at which $F$ is cont - In prob: $P_n \implies P$ if $\lim_n \int f \mathrm{d}P_n = \int f\mathrm{d}P$ - Compact support and conv in moments $\implies$ weak convergence - Moments of semicircular law - Odd: $0$ - Even: Catalan numbers - Hints: - Beta function: $B(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1}\mathrm{d}t = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ - $\Gamma(x+1)=x\Gamma(x)$ - $\Gamma(n+\frac12)=\frac{(2n)!}{4^n n!}\sqrt{\pi}$ - Wigner type * * * Lecture notes are of bigger interest "Modern RMT 3-4.pdf" contains ent tensorization topic Define $$\operatorname{Ent}[Z]= \mathbb{E}[Z\log Z] - \mathbb{E}[Z]\log\mathbb{E}[Z]$$ Assume $$\operatorname{Ent}[e^{\lambda X}]\leq \frac{\lambda^2\sigma^2}{2} \mathbb{E}[e^{\lambda X}]~\text{for}~\lambda\geq0$$ Then $$\psi(\lambda) \equiv \log\mathbb{E}[e^{\lambda(X-\mathbb{E}X)}]\leq \lambda^2\sigma^2/2$$ ### Tensorization of Entropy Let $X_1, \ldots, X_n$ be indep, then $$\operatorname{Ent}[f(X_1, \ldots, X_n)] \leq \operatorname{\mathbb{E}}\left[ \sum_{i=1}^n \operatorname{Ent}_i f(X_1, \ldots, X_n) \right]$$ **Lemma 6** $$\operatorname{Ent}[Z] = \sup_{X:~\mathbb{E}[e^X]=1} \mathbb{E}[ZX]$$