Seperation of Variables {#header-n2889} ======================= Differentiation Rules {#header-n2891} --------------------- The Chain Rule and Product Rule can be established visually fairly easily [^1] and the proofs are fairly straightforward. [^2] ### Product Rule {#header-n2896} $$\begin{aligned} \frac{\operatorname{d} }{\operatorname{d} x}\left( u\cdot v \right)&= \frac{\operatorname{d} u}{\operatorname{d} v}\cdot v + u \cdot \frac{\operatorname{d} v}{\operatorname{d} x} \label{rule_11}\\ \ \notag \\ \frac{\operatorname{d} }{\operatorname{d} x}\left( f\left( x \right)\cdot g\left( x \right) \right)&= f'\left( x \right)\cdot g\left( x \right)+ f\left( x \right)\cdot g'\left( x \right) \label{prodruledefleib}\end{aligned}$$ ### Chain Rule {#header-n2898} $$\begin{aligned} \frac{\operatorname{d}y }{\operatorname{d} x} &= \frac{\operatorname{d} y}{\operatorname{d} u} \cdot \frac{\operatorname{d} u}{\operatorname{d} x}\\ \ \notag \\ \frac{\operatorname{d} }{\operatorname{d} x}\left[ f\left( g\left( x \right) \right) \right]&= f'\left( g\left( x \right) \right)\cdot g\left( x \right) \\ \ \notag \end{aligned}$$ Integration Rules {#header-n2901} ----------------- ### Integration by Substitution {#header-n2902} The chain rule can be used for integration with some clever substitution: Let: $$\begin{aligned} \begin{matrix} u &= g(x) & \quad F(x): \enspace F'(x) = f(x) = y \\ \frac{du}{dx} &= g'(x) \end{matrix}\end{aligned}$$ Now by direct substitution into the chain rule: $$\begin{aligned} \frac{\operatorname{d} }{\operatorname{d} x}\left[ F'\left( u \right) \right]&= F'\left( g\left( x \right) \right)\cdot g'\left( x \right)\notag \\ &= f\left( g\left( x \right) \right)\cdot g'\left( x \right)\notag \\ \implies f\left( g\left( x \right) \right)\cdot g'\left( x \right)&= \frac{\operatorname{d} }{\operatorname{d} x}\left[ F\left( u \right) \right]\notag \\ f\left( g\left( x \right) \right)\cdot g'\left( x \right)&= \frac{\operatorname{d} }{\operatorname{d} x}\left[ F\left( u \right) +C \right]\notag \\ \end{aligned}$$ Now by integrating both sides: $$\begin{aligned} \int^{}_{} f\left( g\left( x \right) \right)\cdot g'\left( x \right) \operatorname{d}x &= \int^{}_{} \frac{\operatorname{d} }{\operatorname{d} x}\left[ F\left( u \right)+ C \right] \operatorname{d}x \notag \\ &= F\left(u \right) + C\notag \\ &= \int^{}_{} f\left( u \right) \operatorname{d}u\notag \end{aligned}$$ So what we have is integration by substitution: $$\begin{aligned} \int^{}_{} f\left( g\left( x \right) \right)\cdot g'\left( x \right) \operatorname{d}x &= \int^{}_{} f\left( u \right) \operatorname{d}u \label{ibysub1} \\ \int^{}_{} f\left( u \right)\cdot \frac{\operatorname{d}u }{\operatorname{d} x} \operatorname{d}x&= \int^{}_{} f\left( u \right) \operatorname{d}u \label{ibysubl} \end{aligned}$$ This basically means that if an integral looks like the differentials could cancel out, they do, making the *Leibniz* notation particularly useful. ### Integration by Parts {#header-n2914} The product rule can be used for integration, but it's only fruitful when: 1. You can choose some $u= f\left( x \right)$ that simplifies when differentiated Or atleast stays the same e.g. $\frac{\operatorname{d} }{\operatorname{d} x}\left[ \sin{\left( x \right)} \right]= \cos{\left( x \right)}$ 2. $\operatorname{d} v= g'\left( x \right) \operatorname{d} x$ can be chosen such that the differential can be readily integrated to give $v$.  \ Consider the Product Rule $\left( \ref{prodruledefleib} \right)$: $$\begin{aligned} \frac{\operatorname{d} }{\operatorname{d} x}\left[ f\left( x \right)\cdot g\left( x \right) \right]&= f'\left( x \right)\cdot g\left( x \right)+ f\left( x \right)\cdot g'\left( x \right)\notag \\ \end{aligned}$$ Let, $$\begin{aligned} \begin{matrix} &u = f\left( x \right) &&v = g\left( x \right)\\ &\frac{\operatorname{d}u }{\operatorname{d} x}= f'\left( x \right) && \frac{\operatorname{d}v }{\operatorname{d} x} = g'\left( x \right) \end{matrix}\end{aligned}$$ Now we have: $$\begin{aligned} \int^{}_{} \left( \frac{\operatorname{d}u }{\operatorname{d} x}\cdot v + u\cdot \frac{\operatorname{d}v }{\operatorname{d} x} \right) \operatorname{d}x &= u\cdot v\notag \\ \ \notag \\ \int^{}_{} \left( v\cdot \frac{\operatorname{d}u }{\operatorname{d} x} \right) \operatorname{d}x + \int^{}_{} \left( u\cdot \frac{\operatorname{d}v }{\operatorname{d} x} \right) \operatorname{d}x&= u\cdot v \notag \end{aligned}$$ By Rule $\left( \ref{ibysubl} \right)$ we have: $$\begin{aligned} \int^{}_{} v \operatorname{d}u + \int^{}_{} u \operatorname{d}v &= u\cdot v \notag \\ \int^{}_{} u \operatorname{d}v &= u\cdot v - \int^{}_{} v \operatorname{d}u \label{ibypartl} \end{aligned}$$ #### Application {#header-n2936} These are really the only two rules we've got (other than manipulation with partial fractions if possible) so the only trick is choosing when to use which one: - Look at the intergrand $\int^{}_{} \left[\enspace \right] \operatorname{d}x$ : - If it's of the form$\left[ f\left( u \right)\cdot \frac{\operatorname{d}u }{\operatorname{d} x}\right] = \left[ f\left( g\left( x \right) \right)\cdot g'\left( x \right) \right]$ - Use Integration by Substitution - If it's of the form: $\left[ f\left( x \right)\cdot \frac{\operatorname{d}u }{\operatorname{d} x} \right]= \left[ f\left( x \right)\cdot g'\left( x \right) \right]$ - Use Integration by Parts Introduction to Ordinary Differential Equations ----------------------------------------------- Equations involving differentials like $\operatorname{d} y$ or $\operatorname{d} x$ or $\frac{\operatorname{d}y }{\operatorname{d} x}$ are differential equations. If the derivatives correspond to only a single independent variable and do not involve partials e.g. ($\frac{\partial u }{\partial x}$) they are said to be *Ordinary Differential Equations* (***ODE***). #### Classifying Differential Equations #### Order and Degree - The Order of a differential corresponds to the higest derivative taken - The Degree is the highest power of the highest order derivative of the *ODE* #### Linearity A Linear ODE is of the form: $$\begin{aligned} \sum^{n}_{0} \left[ a_0\left( x \right)\cdot \left( \frac{\operatorname{d}^ny }{\operatorname{d} x^n} \right) \right] \label{lindef}\end{aligned}$$ #### Solutions to Differential Equations In order of preference, to solve a differential equaiton: 1. Solve for $y$ (explicit) 2. Solve for $x$ (explicit) 3. Solve for 0 (implicit) Seperable Differential Equations --------------------------------    A differential equation of the form: $$\begin{aligned} g\left( y \right)\cdot \frac{\operatorname{d}y }{\operatorname{d} x} = f\left( x \right) \label{sepdiffform}\end{aligned}$$ Is a seperable Ordinary Differential Equation and has a solution: $$\begin{aligned} \int^{}_{} g\left( y \right) \operatorname{d}y = \int^{}_{} f\left( x \right) \operatorname{d}x \label{sepdiffsol} \end{aligned}$$    #### Proof $$\begin{aligned} g\left( y \right)\cdot \frac{\operatorname{d}y }{\operatorname{d} x} &= f\left( x \right)\notag \\ \implies \int^{}_{} g\left( y \right)\frac{\operatorname{d}y }{\operatorname{d} x} \operatorname{d}x &= \int^{}_{} f\left( x \right) \operatorname{d}x\notag \\ \end{aligned}$$ By the Substitution Rule at ($\ref{ibysubl}$): $$\begin{aligned} \int^{}_{} g\left( y \right) \operatorname{d}y &= \int^{}_{} f\left( x \right) \operatorname{d}x \end{aligned}$$ Equations Reducible to Separable Equations ------------------------------------------ Some equations can be tricky to deal with, there is a method of $u$-Substitution: Take some equation of the form: $$\frac{\operatorname{d}y }{\operatorname{d} x}= f\left( \frac{x}{y} \right)$$ We can perform the $u$-substitution: $$\begin{aligned} u&= \frac{y}{x}\notag \\ \implies y &= u\cdot x\notag \\ \implies \frac{\operatorname{d}y }{\operatorname{d} x}&= \frac{\operatorname{d}u }{\operatorname{d} x}\cdot x+ \left( 1 \right)\cdot u \notag\end{aligned}$$ Substituting in the terms: $$\begin{aligned} \frac{\operatorname{d}y }{\operatorname{d} x}&= f\left( \frac{y}{x} \right)\notag \\ \frac{\operatorname{d}u }{\operatorname{d} x}\cdot x + u&= f\left( u \right)\notag \\ \frac{\operatorname{d}u }{\operatorname{d} x}\cdot x&= f\left( u \right)- u\notag \\ \frac{1}{f\left( u \right)- u}\cdot \frac{\operatorname{d}u }{\operatorname{d} x}\cdot x &= 1\notag \\ \frac{1}{f\left( u \right)- u }\cdot \frac{\operatorname{d}u }{\operatorname{d} x}&= \int^{}_{} \frac{1}{x} \operatorname{d}x \notag \\ \int^{}_{} \frac{1}{f\left( u \right)- u}\cdot \frac{\operatorname{d}u }{\operatorname{d} x} \operatorname{d}x&= \int^{}_{} \frac{1}{x} \operatorname{d}x\notag \\ \int^{}_{} \frac{1}{f\left( u \right)- u} \operatorname{d}u &= \ln{ \left| x \right| }+ c \end{aligned}$$ Now presume $\exists G\left( u \right): G\left( u \right)= \int^{}_{} \frac{1}{f\left( u \right)- u} \operatorname{d}u$ $$\begin{aligned} G\left( u \right)&= \ln{ \left| x \right| }+ c\notag \\ G\left( \frac{y}{x} \right)&= \ln{ \left| x \right| }+ c\notag \\ G\left( \frac{y}{x} \right)+ \ln{ \left| x \right| }+ c &= 0 \label{redsepfin}\end{aligned}$$ Hence by by ([\[redsepfin\]](#redsepfin){reference-type="ref" reference="redsepfin"}) there must atleast be an implicit solution to the equation assuming that the integral can be solved. [^1]: [Visualizing the chain rule and product rule](https://www.youtube.com/watch?v=YG15m2VwSjA) [^2]: [Differentiation Rules Proof](https://www.dropbox.com/s/by7pzzkap8gyvav/Differentiation%20Rules.pdf?dl=0)