Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> So... what exactly is this assignment? it looks tricky. $a)$ Use the derivative formula $f'(x)=4x^3$ to find the linear approximation of $f(x)=x^4$ at $x=2$. $b)$ Use the linear approximation to estimate the value of $3.06^4$ </div></div> <div><div class="alert blue"> Oh! Do you remember the lecture for 1.8 that we did in class friday? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I kind of remember... but can you refresh my memory? </div></div> <div><img class="left"/><div class="alert gray"> What is $L(x)$? </div></div> <div><div class="alert blue"> So, in class for section 1.8 we talked about using the derivative of an equation to find the linear approximation which is $f(x)=L(x)=f(a)+f'(a)(x-a)$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh right! Do we just plug in our values from the question since they give us the values in the question? </div></div> <div><div class="alert blue"> Yes! you got it. :smile: For part $b)$ of the problem you would just plug in the given value for x into the linear approximation you just did. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Alright so the equation would look like this? $L(x)=f(2)-f'(2)(x-2)$ So.. $L(x)=16+32(x-2)$ </div></div> <div><div class="alert blue"> Yes! </div></div> <div><div class="alert blue"> Also, don't forget to plug in your value into your linear approximation to estimate the value of $3.06^4$ </div></div> </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Like this? $L(x)=16+32(3.06-2)$ Which is $49.92$. </div></div> <div><div class="alert blue"> Awesome! you totally got this :100: </div></div> To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.