--- tags: linux2022 --- # 2022q1 Homework1 (quiz1) > [作業要求](https://hackmd.io/@sysprog/B166rc3Jq) > [quiz1](https://hackmd.io/@sysprog/linux2022-quiz1) ### 測驗`1` Two Sum 以 Linux 核心風格的 hash table 解之 #### 說明及補完程式碼 ##### 結構 參考 Linux 原始碼中 type.h : ```c struct list_head { struct list_head *next, *prev; // circular doubly-linked list }; struct hlist_head { struct hlist_node *first; // linked list }; struct hlist_node { struct hlist_node *next, **pprev; // doubly-linked list }; ``` ```c struct hlist_node { struct hlist_node *next, **pprev; }; struct hlist_head { struct hlist_node *first; }; typedef struct { int bits; struct hlist_head *ht; } map_t; #define MAP_HASH_SIZE(bits) (1 << bits) map_t *map_init(int bits) { map_t *map = malloc(sizeof(map_t)); if (!map) return NULL; map->bits = bits; map->ht = malloc(sizeof(struct hlist_head) * MAP_HASH_SIZE(map->bits)); if (map->ht) { for (int i = 0; i < MAP_HASH_SIZE(map->bits); i++) (map->ht)[i].first = NULL; } else { free(map); map = NULL; } return map; } struct hash_key { int key; void *data; struct hlist_node node; }; ``` ```graphviz digraph structs { rankdir=LR node [shape=record] map [label="map_t|{bits|<ht>ht}"] hlist_head [label="{{Hash Table|<h1>hlist_head[0]-first|<h2>hlist_head[1]-first|...|<hn>hlist_head[2^bits-1]-first}}"] node1 [label="{hash_key |{key|data|<h_node>hlist_node|{ <p>pprev| <next>next}}}"] node2 [label="{hash_key |{key|data|<h_node>hlist_node|{ <p>pprev| <next>next}}}"] node3 [label="{NULL}"] node4 [label="{hash_key |{key|data|<h_node>hlist_node|{ <p>pprev| <next>next}}}"] node5 [label="{NULL}"] node6 [label="{seq_node6|{key|data|<h_node>hlist_node|{ <p>pprev| <next>next}}}"] node7 [label="{NULL}"] map -> hlist_head -> node1 -> node2 -> node3[weight = 10, style = invis]; hlist_head -> node4 -> node5[weight = 10, style = invis]; hlist_head -> node6[weight = 10, style = invis]; map:ht -> hlist_head:h1; hlist_head :h1 -> node1:h_node:t; node1:p -> hlist_head:h1:t; node1:next -> node2:h_node:w; node2:p -> node1:h_nod; node2:next -> node3:h_node:w; hlist_head :h2 -> node4:h_node:t; node4:p -> hlist_head:h2:t; node4:next -> node5:h_node:t; hlist_head :hn -> node6:h_node:t; node6:p -> hlist_head:hn:t; node6:next -> node7:h_node:w; } ``` * 由 `map_t` 裡的 `hlist_head` array 當作 bucket,每個 bucket 裝有一串結構體:`hash_key`,並由 `hash_key` 裡的 `hlist_node` 串起。 * `1 << bits` 代表可以有多少不同的十進制數字,也就是 hash table 有多少 bucket(`hlist_head`[] size)。 ##### 在 hash table 裡找 key 及 value ```c= #define container_of(ptr, type, member) \ ({ \ void *__mptr = (void *) (ptr); \ ((type *) (__mptr - offsetof(type, member))); \ }) #define GOLDEN_RATIO_32 0x61C88647 static inline unsigned int hash(unsigned int val, unsigned int bits) { /* High bits are more random, so use them. */ return (val * GOLDEN_RATIO_32) >> (32 - bits); } static struct hash_key *find_key(map_t *map, int key) { struct hlist_head *head = &(map->ht)[hash(key, map->bits)]; for (struct hlist_node *p = head->first; p; p = p->next) { struct hash_key *kn = container_of(p, struct hash_key, node); if (kn->key == key) return kn; } return NULL; } void *map_get(map_t *map, int key) { struct hash_key *kn = find_key(map, key); return kn ? kn->data : NULL; } ``` * 在 `find_key` 函式中,將 key 代入 hash 函式找出對應的 hash 值,來得到該 bucket(`hlist_head`),再由 `hlist_head->first` 開始迭代 `hlist_node`。 * 透過 `container_of` 找出 結構體 `hash_key` 地址,便可以找到該結構體的 key。 ##### 在 hash table 裡儲存 key 及 value ```c= void map_add(map_t *map, int key, void *data) { struct hash_key *kn = find_key(map, key); if (kn) return; kn = malloc(sizeof(struct hash_key)); kn->key = key, kn->data = data; struct hlist_head *h = &map->ht[hash(key, map->bits)]; struct hlist_node *n = &kn->node, *first = h->first; AAA; if (first) first->pprev = &n->next; h->first = n; BBB; } ``` * 第 7 行配置一個結構體空間:`hash_key`,第 10 行找到該b ucket(`hlist_head`):`h`,第 11 行找到該新增的結構體裡的 `hlist_node`:`n`。 * 接下來要處理新增的 `hlist_node` 的 `next` 及 `pprev`,新增的 `hlist_node` 會直接插入 bucket 的第一個位置, 因此將新增的 `hlist_node->next` 指向 `hlist_head` 現在的 `first`,`AAA` = `n->next = first`。 第 13-15 行,若 `hlist_head` 裡有 `hlist_node`,`hlist_head` 現在的 `first->pprev` 指向前一個元素的記憶體位址本身:`&n->next`==(為何不指向 &n?)==。`hlist_head` 現在的 `first` 替換成新增的 `hlist_node`。 新增的 `hlist_node->pprev` 指向前一個元素的記憶體位址本身,因此 `BBB` = `n->pprev = &h->first` ==(為何不指向 &h?)==。 ```graphviz digraph structs{ rankdir = LR node[shape=record] h [label="<a>hlist_head:h|<f>first"] n [label="<a>hlist_node:n|{<f>pprev|<n>next}"] o [label="<a>first|{<f>pprev|next}"] n:n -> o:a; o:f -> n:n; h:f -> n:a; n:f -> h; } ``` :::info 上述 highlight 處,我認為有可能的原因在於方便其他操作,如下方 `map_deinit` 函式裡第 18 行,只需 dereference `pprev` 就可以拿到指向下一個 node 的指標。 ::: ##### 釋放 map 記憶體 ```c= void map_deinit(map_t *map) { if (!map) return; for (int i = 0; i < MAP_HASH_SIZE(map->bits); i++) { struct hlist_head *head = &map->ht[i]; for (struct hlist_node *p = head->first; p;) { struct hash_key *kn = container_of(p, struct hash_key, node); struct hlist_node *n = p; p = p->next; if (!n->pprev) /* unhashed */ goto bail; // Remove n from the list struct hlist_node *next = n->next, **pprev = n->pprev; *pprev = next; if (next) next->pprev = pprev; n->next = NULL, n->pprev = NULL; bail: free(kn->data); free(kn); } } free(map); } ``` * 釋放資源的順序為 hash table 裡的每個 bucket -> bucket 裡的每個 hash_key 及 hlist_node。 * ==第 13 行,unhashed 意思?== * 第 17 至 21 行將 node:n 移出 bucket,把 n 的前一個節點的 next 指到 n 的下一個節點,且把 n 的下個節點的 pprev 指向 n 的前一個節點。 ##### Two Sum 主程式 ```c int *twoSum(int *nums, int numsSize, int target, int *returnSize) { map_t *map = map_init(10); *returnSize = 0; int *ret = malloc(sizeof(int) * 2); if (!ret) goto bail; for (int i = 0; i < numsSize; i++) { int *p = map_get(map, target - nums[i]); if (p) { /* found */ ret[0] = i, ret[1] = *p; *returnSize = 2; break; } p = malloc(sizeof(int)); *p = i; map_add(map, nums[i], p); } bail: map_deinit(map); return ret; } ``` * 初始化 hash table,若無法配置回傳結果的空間,便釋放掉 hash table。 * 在 hash table 中找出 nums 裡對應的 two sum 值,找完後便釋放 hash table,若其中有任一 nums 找不到,便將該 key(nums 值)及 value(index)存入 hash map 中,讓該 nums 值對應的 two sum 值之後可以找到該 nums 值。 :::danger 疑問:上述 highlight 處 ::: :::warning TODO: * 研讀 Linux 核心原始程式碼 [include/linux/hashtable.h](https://github.com/torvalds/linux/blob/master/include/linux/hashtable.h) 及對應的文件 [How does the kernel implements Hashtables?](https://kernelnewbies.org/FAQ/Hashtables),解釋 hash table 的設計和實作手法,並留意到 [tools/include/linux/hash.h](https://github.com/torvalds/linux/blob/master/tools/include/linux/hash.h) 的 GOLDEN_RATIO_PRIME,探討其實作考量 ::: ### 測驗`2` Remove Duplicates from Sorted List #### 說明及補完程式碼 針對 [LeetCode 82. Remove Duplicates from Sorted List II](https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/),以下是可能的合法 C 程式實作: ```c #include <stddef.h> struct ListNode { int val; struct ListNode *next; }; struct ListNode *deleteDuplicates(struct ListNode *head) { if (!head) return NULL; if (COND1) { /* Remove all duplicate numbers */ while (COND2) head = head->next; return deleteDuplicates(head->next); } head->next = deleteDuplicates(head->next); return head; } ``` 此遞迴函式的終止條件分成三部份: 1. 當前節點為空時,回傳空節點。 2. 當前節點的下個節點不為空,且當前節點的值等於下個節點的值,當前節點會往下迭代,如此可以跳過重複的節點。 ```graphviz digraph struct{ label = "at the beginning"; node[shape=box]; a1 [label="a"]; a2 [label="a"]; a3 [label="a"]; b [label="b"]; c [label="c"]; { head[shape=plain] rank = same; head [label="head"]; head-> a1[arrowhead=vee]; } rankdir = LR; a1 -> a2 -> a3 -> b -> c; } ``` ```graphviz digraph struct{ label = "after iteration"; node[shape=box]; a1 [label="a"]; a2 [label="a"]; a3 [label="a"]; b [label="b"]; c [label="c"]; { head[shape=plain] rank = same; head [label="head"]; head-> a3[arrowhead=vee]; } rankdir = LR; a1 -> a2 -> a3 -> b -> c; } ``` ```graphviz digraph struct{ label = "function call"; node[shape=box]; a1 [label="a"]; a2 [label="a"]; a3 [label="a"]; b [label="b"]; c [label="c"]; { head[shape=plain] rank = same; head [label="head"]; head-> a3[arrowhead=vee]; } { entry[shape=plain] rank = same; entry [label="function entry"]; entry-> b[arrowhead=onormal]; } rankdir = LR; a1 -> a2 -> a3 -> b -> c; } ``` 回傳下個節點為首的 linked-list 。 所以 `COND1` 以及 `COND2` = `head->next && head->val == head->next->val` 。 3. 當前節點的下個節點不為空,且當前節點的值與下個節點的值不同,以當前節點的下個節點為首呼叫此遞迴函式,來刪掉下個節點為首的 linked list 裡重複的節點。 ```graphviz digraph struct{ label = "at the beginning"; node[shape=box]; a [label="a"]; b1 [label="b"]; b2 [label="b"]; b3 [label="b"]; c [label="c"]; { head[shape=plain] rank = same; head [label="head"]; head-> a[arrowhead=vee]; } rankdir = LR; a -> b1 -> b2 -> b3 -> c; } ``` ```graphviz digraph struct{ label = "function call"; node[shape=box]; a [label="a"]; b1 [label="b"]; b2 [label="b"]; b3 [label="b"]; c [label="c"]; { head[shape=plain] rank = same; head [label="head"]; head-> a[arrowhead=vee]; } { entry[shape=plain] rank = same; entry [label="function entry"]; entry-> b1[arrowhead=onormal]; } rankdir = LR; a -> b1 -> b2 -> b3 -> c; } ``` 回傳當前節點為首的 linked-list 。 #### 嘗試避免遞迴,寫出同樣作用的程式碼 ```c struct ListNode* deleteDuplicates(struct ListNode* head){ if (!head) return NULL; struct ListNode* iterator = head; struct ListNode* prev = NULL; bool isDuplicated = 0; while (iterator) { if (iterator->next && iterator->val == iterator->next->val) { iterator->next = iterator->next->next; isDuplicated = 1; } else { if (isDuplicated && prev != NULL) { prev->next = iterator->next; isDuplicated = 0; } else if (isDuplicated && prev == NULL) { head = head->next; prev = NULL; isDuplicated = 0; } else { prev = iterator; } iterator = iterator->next; } } return head; } ``` 想法是迭代整個 linked list,只要遇到連續同樣值的節點,便將「出現同樣值的第一個節點」的 `next` 指向下下一個節點。 要注意的是需要移除所有重複的節點,所以「出現同樣值的第一個節點」也必需被移除。而這裡的 linked list 為單向,所以需要宣告新的變數來儲存前一個節點,來讓「出現同樣值的第一個節點」被其前節點跳過。 :::warning TODO: * 以類似 Linux 核心的 circular doubly-linked list 改寫,撰寫遞迴和迭代 (iterative) 的程式碼 ::: ### 測驗`3` LRU Cache #### 說明及補完程式碼 針對 [LeetCode 146. LRU Cache](https://leetcode.com/problems/lru-cache/),以下是 [Least Recently Used (LRU)](https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)) 可能的合法 C 程式實作 補完程式碼 `MMM1`, `MMM2`, `MMM3`, `MMM4`,都是 [Linux 核心風格的 list 巨集](https://github.com/sysprog21/lab0-c/blob/master/list.h),以 list_ 開頭 以下為參考 [`jim12312321`](https://hackmd.io/@jim12312321/H1ml7rzlq#%E6%B8%AC%E9%A9%973-%EF%BC%9A-%E5%AF%A6%E4%BD%9C-LeetCode-146) 且經消化過的內容 ##### 結構 ```c struct list_head { struct list_head *prev; struct list_head *next; }; ``` ```c typedef struct { int capacity, count; struct list_head dhead, hheads[]; } LRUCache; ``` * capacity:表示 `LRUCache` 裡 `hheads` 有多大,也就是 LRUNode 的上限 * count:表示目前有幾個 `LRUNode` * dhead:紀錄最近被使用次序的 `LRUNode` 的 head * hheads:根據不同 hash 值紀錄 `LRUNode` 的 head ```c typedef struct { int key, value; struct list_head hlink, dlink; } LRUNode; ``` * key:`LRUNode` 的編號 * value:`LRUNode` 的值 * hlink:接在 `hheads[hash值]` 後面 * dlink:接在 `dhead` 後面,越前面代表越近被使用過 ```graphviz digraph structs { rankdir=LR node [shape=record] cache [label="{LRUCache|{capacity = 2|count|<dh> dhead|<hh0> hheads[0]|<hh1> hheads[1]}}"] node1 [label="{LRUNode|{key|value |<d> dlink|<h> hlink}}"] node2 [label="{LRUNode|{key|value |<d> dlink|<h> hlink}}"] cache -> node1 -> node2[weight = 10, style = invis]; cache:dh -> node1:d:w[color="darkgreen"]; cache:hh0 -> node1:h:w; cache:hh1 -> node2:h:w; node1:d -> node2:d:w[color="darkgreen"]; } ``` ##### 建立 LRU Cache ```c LRUCache *lRUCacheCreate(int capacity) { LRUCache *obj = malloc(sizeof(*obj) + capacity * sizeof(struct list_head)); obj->count = 0; obj->capacity = capacity; INIT_LIST_HEAD(&obj->dhead); for (int i = 0; i < capacity; i++) INIT_LIST_HEAD(&obj->hheads[i]); return obj; } ``` 因為 `hheads` 是 array,得知 capacity 時需配置另外的空間。 `INIT_LIST_HEAD` 為將結點設為雙向鏈結串列。 ##### 釋放 LRU Cache ```c void lRUCacheFree(LRUCache *obj) { LRUNode *lru, *n; MMM1 (lru, n, &obj->dhead, dlink) { list_del(&lru->dlink); free(lru); } free(obj); } ``` `MMM1` = `list_for_each_entry_safe`,透過此 preprocessor directive 可以取得每個 `LRUNode->dlink` 的地址,其定義為: ```c /** * list_for_each_entry_safe - iterate over list entries and allow deletes * @entry: pointer used as iterator * @safe: @type pointer used to store info for next entry in list * @head: pointer to the head of the list * @member: name of the list_head member variable in struct type of @entry * * The current node (iterator) is allowed to be removed from the list. Any * other modifications to the the list will cause undefined behavior. * * FIXME: remove dependency of __typeof__ extension */ #define list_for_each_entry_safe(entry, safe, head, member) \ for (entry = list_entry((head)->next, __typeof__(*entry), member), \ safe = list_entry(entry->member.next, __typeof__(*entry), member); \ &entry->member != (head); entry = safe, \ safe = list_entry(safe->member.next, __typeof__(*entry), member)) ``` entry:由 `list_head` 串起的主體,在這裡即 `LRUNode` head:整串 list,在這裡即 `LRUCache` 的 `dhead` 採用 safe 的版本是因為需要存下一個 node 用以接著 delete ##### 從 LRU Cache 取得資訊 ```c int lRUCacheGet(LRUCache *obj, int key) { LRUNode *lru; int hash = key % obj->capacity; MMM2 (lru, &obj->hheads[hash], hlink) { if (lru->key == key) { list_move(&lru->dlink, &obj->dhead); return lru->value; } } return -1; } ``` `MMM2` = `list_for_each_entry`,透過此可以取得 `hlink` 的地址,其作用為 `list_for_each_entry_safe` 沒有儲存下一個 node 的版本: ```c #ifdef __LIST_HAVE_TYPEOF #define list_for_each_entry(entry, head, member) \ for (entry = list_entry((head)->next, __typeof__(*entry), member); \ &entry->member != (head); \ entry = list_entry(entry->member.next, __typeof__(*entry), member)) #endif ``` entry:由 `list_head` 串起的主體,在這裡即 `LRUNode` head:整串 list,在這裡即 `obj->hheads[hash值]` `lRUCacheGet` 目的在於依據 `key` 值,將對應的 `LRUNode` 取出,並透過 `list_move` 將此 `LRUNode` 移到 `dhead` 的開頭,代表目前最常被使用過。 ##### 放置資訊至 LRU Cache ```c void lRUCachePut(LRUCache *obj, int key, int value) { LRUNode *lru; int hash = key % obj->capacity; MMM3 (lru, &obj->hheads[hash], hlink) { if (lru->key == key) { list_move(&lru->dlink, &obj->dhead); lru->value = value; return; } } if (obj->count == obj->capacity) { lru = MMM4(&obj->dhead, LRUNode, dlink); list_del(&lru->dlink); list_del(&lru->hlink); } else { lru = malloc(sizeof(LRUNode)); obj->count++; } lru->key = key; list_add(&lru->dlink, &obj->dhead); list_add(&lru->hlink, &obj->hheads[hash]); lru->value = value; } ``` `MMM3` = `list_for_each_entry`,解釋同`MMM2` `MMM4` = `list_last_entry`,作用為取出整串 `dhead` 的最後一個 `LRUNode->dlink` 的地址,其定義為: ```c /** * list_last_entry() - get last entry of the list * @head: pointer to the head of the list * @type: type of the entry containing the list node * @member: name of the list_head member variable in struct @type * * Return: @type pointer of last entry in list */ #define list_last_entry(head, type, member) \ list_entry((head)->prev, type, member) ``` `lRUCachePut` 目的為當有找到對應 `key` 值的 `LRUNode` 時將其值取代,並將此 `LRUNode` 移到 `dhead` 的開頭,代表目前最常被使用過。 倘若 `LRUCache` 沒有空間時,利用 `list_last_entry` 刪掉 `dhead` 最後一個節點(代表目前最不常使用的)。若仍有空間,`配置一個` `LRUNode` 的空間。最後更新 `LRUNode` 所需資訊。 :::warning TODO: * 撰寫完整的測試程式, 指出其中可改進之處並實作 * 在 Linux 核心找出 LRU 相關程式碼並探討 ::: ### 測驗`4` Longest Consecutive Sequence #### 說明及補完程式碼 針對 [LeetCode 128. Longest Consecutive Sequence](https://leetcode.com/problems/longest-consecutive-sequence/description/),以下是可能的合法 C 程式實作: ```c #include <stdio.h> #include <stdlib.h> #include "list.h" struct seq_node { int num; struct list_head link; }; static struct seq_node *find(int num, int size, struct list_head *heads) { struct seq_node *node; int hash = num < 0 ? -num % size : num % size; list_for_each_entry (node, &heads[hash], link) { if (node->num == num) return node; } return NULL; } int longestConsecutive(int *nums, int n_size) { int hash, length = 0; struct seq_node *node; struct list_head *heads = malloc(n_size * sizeof(*heads)); for (int i = 0; i < n_size; i++) INIT_LIST_HEAD(&heads[i]); for (int i = 0; i < n_size; i++) { if (!find(nums[i], n_size, heads)) { hash = nums[i] < 0 ? -nums[i] % n_size : nums[i] % n_size; node = malloc(sizeof(*node)); node->num = nums[i]; list_add(&node->link, &heads[hash]); } } for (int i = 0; i < n_size; i++) { int len = 0; int num; node = find(nums[i], n_size, heads); while (node) { len++; num = node->num; list_del(&node->link); int left = num, right = num; while ((node = find(LLL, n_size, heads))) { len++; list_del(&node->link); } while ((node = find(RRR, n_size, heads))) { len++; list_del(&node->link); } length = len > length ? len : length; } } return length; } ``` 根據程式碼畫出結構示意圖: ```graphviz digraph structs { rankdir=LR node [shape=record] heads [label="{heads|{<h1>[hash1]|<h2>[hash2]|...|<hn>[hashn]}}"] node1 [label="{seq_node1|{num|<link>link}}"] node2 [label="{seq_node2|{num|<link>link}}"] node3 [label="{seq_node3|{num|<link>link}}"] node4 [label="{seq_node4|{num|<link>link}}"] node5 [label="{seq_node5|{num|<link>link}}"] node6 [label="{seq_node6|{num|<link>link}}"] heads -> node1 -> node2 -> node3[weight = 10, style = invis]; heads -> node4 -> node5[weight = 10, style = invis]; heads -> node6[weight = 10, style = invis]; heads:h1 -> node1:link:w; node1:link -> node2:link:w; node2:link -> node3:link:w; heads:h2 -> node4:link:w; node4:link -> node5:link:w; heads:hn -> node6:link:w; } ``` `find` 函式裡的參數 `size` 即為 `heads` 的大小。根據參數 `num` 做模餘對應到 hash 串列開頭,透過此串列(`link`)逐一尋訪 `seq_node`,試圖找到有著 `num` 的 `seq_node`。 `longestConsecutive` 函式在開始時配置 `n_size` 的 `heads` 空間,並根據 `nums` array 裡的值,逐一配置 `seq_node` 的空間再將其串在對應 hash 值的 `heads` 後。 最後一個 for loop 即在找尋`nums` array 裡有幾個連續數值。迭代`nums` array,將每個值連續相加及連續相減直到找不到相應值的 `seq_node` 為止,過程中將長度記下。且在找到相應值的 `seq_node` 時透過 `list_del` 將該 `seq_node` 的 `link` 從 `heads` 串列中移除,避免接下來的尋訪再次重複。 因為在此 for loop 中任意 `nums` array 的值已經找過,接下來要分別往上及往下尋找,因此`LLL` = `--left`,`RRR` = `++right`。 :::warning TODO: * 撰寫完整的測試程式, 指出其中可改進之處並實作 * 嘗試用 Linux 核心風格的 hash table 重新實作上述程式碼 :::