機器學習技法筆記 === {%hackmd Hyaw8Gm6n %} - [導覽頁面](https://hackmd.io/@ShawnNTU-CS/r1kn_Nqhh) :::warning 此筆記用途為複習用、補充些許內容、以及敘述講義未寫的老師口述重點,還有個人對於某些內容的理解。 使用前必須先上過林軒田教授所開授的: - [機器學習技法](https://www.coursera.org/learn/machine-learning-techniques) 或者在學習過程若有疑惑也可翻閱此筆記,也可以同時搭配講義內容。 或許有我所提供的觀點以幫助理解~ ::: 機器學習基石筆記 --- - [轉接](https://hackmd.io/@ShawnNTU-CS/BJVnW49nn) 16 週課程 --- - [第一週 Linear Support Vector Machine](https://hackmd.io/@ShawnNTU-CS/ByNeNuI2n) - [第二週 Dual Support Vector Machine](https://hackmd.io/@ShawnNTU-CS/HybC95v22) - [第三週 Kernel Support Vector Machine](https://hackmd.io/@ShawnNTU-CS/r1kk9fFn2) - [第四週 Soft-margin Support Vector Machine](https://hackmd.io/@ShawnNTU-CS/rJS8Wkchh) - [第五週 Kernel Logistic Regression](https://hackmd.io/@ShawnNTU-CS/S1T4Q9Thn) - [第六週 Support Vector Regression](https://hackmd.io/@ShawnNTU-CS/SkcCdKRnn) - [第七週 Blending and Bagging](https://hackmd.io/@ShawnNTU-CS/BywPOgyan) - [第八週 Adaptive Boosting](https://hackmd.io/@ShawnNTU-CS/SJvNkG16h) - [第九週 Decision Tree](https://hackmd.io/@ShawnNTU-CS/SkCMtCf62) - [第十週 Random Forest](https://hackmd.io/@ShawnNTU-CS/rkSqrG7an) - [第十一週 Gradient Boosted Decision Tree](https://hackmd.io/@ShawnNTU-CS/H17m0L7a3) - [第十二週 Neural Network](https://hackmd.io/@ShawnNTU-CS/BJuSNKEp2) - [第十三週 Deep Learning](https://hackmd.io/@ShawnNTU-CS/HkIxZtv6h) - [第十四週 Radial Basis Function Network](https://hackmd.io/@ShawnNTU-CS/S1hTRhOa2) - [第十五週 Matrix Factorization](https://hackmd.io/@ShawnNTU-CS/H1JELhta3) - [第十六週 Finale](https://hackmd.io/@ShawnNTU-CS/rJagqJ9an) <!-- checked --> 待填的坑 --- - [第四週 Soft Margin SVM](https://hackmd.io/oJS56aBkQZ-fR1dCWRK6Eg?both#alpha_ngt0--Support-Vector) 當全部的 Support Vector $\alpha$ 都等於 $C$ 的時候,$b$ 的處理方法。 - [第九週 Decision Tree](https://hackmd.io/@ShawnNTU-CS/SkCMtCf62) - Regression 的決策樹要怎麼弄 - Missing feature 的一致意思 - [第十一週 Gradient Boosted Decision Tree](https://hackmd.io/PO8x4FRTQmabv5oR-WYYNg?both#Gradient-Boosted-Decision-Tree-GBDT) 不確定要怎麼做 GBDT 的採樣 - [第十二週 Neural Network](https://hackmd.io/@ShawnNTU-CS/BJuSNKEp2) scaled L2 的解釋 - [第十六週](https://hackmd.io/@ShawnNTU-CS/rJagqJ9an) 待我全都回顧後來個統整。 作業心得/紀錄/提供思路 --- - [HW1](https://hackmd.io/@ShawnNTU-CS/rJGBgd93h) - [HW2](https://hackmd.io/@ShawnNTU-CS/HknDRUGp2) - [HW3](https://hackmd.io/@ShawnNTU-CS/H192_08ah) - [HW4](https://hackmd.io/@ShawnNTU-CS/rkHWd_7h3) 巧思紀錄 --- - [問題轉換](https://hackmd.io/iISbapICSbqs9aWnDVQpKQ?both#%E5%95%8F%E9%A1%8C%E7%9A%84%E8%BD%89%E6%8F%9B) - [Lagrange Function](https://hackmd.io/I6TUxZjeSw270SMrwVDvUw?both#Lagrange-Function) - [max err 的轉換](https://hackmd.io/@ShawnNTU-CS/SkcCdKRnn#Standard-Support-Vector-Regression-Primal)
{"title":"機器學習技法筆記","description":"機器學習技法筆記","contributors":"[{\"id\":\"67b57811-a6cb-40ee-a103-b61d8c13b1e2\",\"add\":2736,\"del\":95}]"}
Expand menu