機率 === - [機率](/lB9C4si-SSO30PpinQB_DA) ### 課程資訊 Information - 授課教師 Lecturer:謝秉均 - 授課時間 Semester:112-1, 2023 Fall - 評分方式 Grading: - Homeworks: 40% (including written and programming tasks) - HW1: Axioms, Sets, and Conditional Probability - HW2: Independence, Combinatorics, and RVs - HW3: Continuous RV and Joint Distributions - HW4: Concentration Inequalities, LLN, and Multivariate Normal - Midterm: 30% - Final Exam: 30% - [課程綱要 Syllabus](https://timetable.nycu.edu.tw/?r=main/crsoutline&Acy=112&Sem=1&CrsNo=515512&lang=zh-tw) ### 上課筆記 Notes - [機率 - 1 (Set Thm ~ Entropy)](/oKa988LySACLrk_HfyUxTw) - [機率 - 2 (Expectation ~ Conti R.V.)](/KKBQgYdCSAqJvHYDUbZ94w) - [機率 - 3 (Normal R.V. ~ Conditional Distribution)](/CNC_a3uyRXCDTkNrqer00g) - [機率 - 4 (Bivariate Normal R.V. ~ ?)](/JLIJnqUkSpyAoZ18mfwxig) ### Cheatsheet #### 期中 - [x] PMF of Poisson R.V. - [x] prop of a valid CDF * $F_X(t)$ is non-decreasing * $\displaystyle\lim_{t\to\infty}F_X(t)=1$, $\displaystyle\lim_{t\to-\infty}F_X(t)=0$ * $F_X(t)$ is right-continuous ($F_X(t^{+})=F_X(t)$) - [x] Borel-Cantelli Lemma #### 期末 - [x] normal r.v. - PDF - [x] joint & marginal 的轉換 - [x] MGF - 各種 r.v. 的 MGF - [x] property of expectation of 2 R.V. - [x] Bivariate Normal R.V. - joint PDF - Property - [x] Covariance, Correlation Coefficient - [x] Concentration inequality - [ ] LLN - Convergence in probability - Convergence almost Surely - [ ] Central Limit Theorem - Convergence in distribution - [ ] Martingale - Azuma’s Inequality
{"title":"機率","description":"<input class=\"task-list-item-checkbox\"type=\"checkbox\"> MGF","contributors":"[{\"id\":\"3bce5f54-25a6-4009-bb88-3cb689d8bd62\",\"add\":1667,\"del\":93}]"}
Expand menu