### Simulate the decoupled system and Wannerize the eigenstates
```python=
voltages = {'left_1': -0.0036,
'left_2': -0.0086,
'right_1': -0.0086,
'right_2': -0.0036,
'top_1': -0.0037,
'top_2': -0.0037,
'global_accumul': -7e-05}
summed_ham = sum(
[
linear_ham[key] * voltages[key]
for key, value in linear_ham.items()
]
)
tight_binding_hamiltonian = base_hamiltonian + summed_ham
eigval, eigvec = sl.sort_eigen(sparse.linalg.eigsh(tight_binding_hamiltonian.tocsc(),
k=12, sigma = 0))
lowest_e_indices = np.argsort(np.abs(eigval))[: 6]
lowest_e_energies = eigval[lowest_e_indices]
lowest_e_states = eigvec.T[:, lowest_e_indices].T
```

#### Wannierize the decoupled states to find a basis with isolated Majoranas
```python=
X_operator = Density(
trijunction, onsite=lambda site: np.eye(4) * site.pos[0]
)
Y_operator = Density(
trijunction, onsite=lambda site: np.eye(4) * site.pos[1]
)
projected_X_operator = wannier_1D_operator(X_operator,
lowest_e_states.T)
projected_Y_operator = wannier_1D_operator(Y_operator,
lowest_e_states.T)
w_basis = wannier_basis([projected_X_operator,
projected_Y_operator])
mlwf = w_basis.T @ lowest_e_states
```

### Turn on the coupling between one of the Majorana pairs and compute the eigenstates again
```python=
voltages = {'left_1': -0.0014,
'left_2': -0.0014,
'right_1': -0.0014,
'right_2': -0.0014,
'top_1': -0.0037,
'top_2': -0.0037,
'global_accumul': 3e-3}
```

```python=
summed_ham = sum(
[
linear_ham[key] * voltages[key]
for key, value in linear_ham.items()
]
)
tight_binding_hamiltonian = base_hamiltonian + summed_ham
eigval, eigvec = sl.sort_eigen(sparse.linalg.eigsh(tight_binding_hamiltonian.tocsc(),
k=12, sigma = 0))
lowest_e_indices = np.argsort(np.abs(eigval))[: 6]
lowest_e_energies = eigval[lowest_e_indices]
coupled_states = eigvec.T[:, lowest_e_indices].T
```

### Unitary transformation using SVD
```python=
# Overlap matrix
decoupled_states = mlwf
S = coupled_states @ decoupled_states.T.conj()
# Unitary matrix using SVD
U, _, Vh = svd(S)
S_prime = U @ Vh
# Transform coupled Hamiltonian to Majorana basis
coupled_ham = S_prime.T.conj() @ np.diag(lowest_e_energies) @ S_prime
```
The relevant part of the coupled Hamiltonian in the Majorana basis is
