# 応用物理 提出課題 演習問題4.1 ## T4-24 下山 歩 ###### tags: `応用物理Ⅲ` ## 解答 ### (1) $\psi(x) = \sin x$ $$ \begin{align} \int_{-\pi}^{\pi} \psi^{*} \psi dx &= \int_{-\pi}^{\pi} \sin x \sin x dx \\ &= \int_{-\pi}^{\pi} \sin^2 x dx \\ &= \int_{-\pi}^{\pi} \cfrac{1 - \cos 2x}{2} dx \\ &= \cfrac{1}{2} \int_{-\pi}^{\pi}(1 - \cos 2x)dx \\ &= \cfrac{1}{2} \left[ x - \cfrac{1}{2} \sin 2x \right]_{-\pi}^{\pi} \\ &= \cfrac{1}{2} \left( \pi - 0 - (-\pi - 0) \right) \\ &= \pi \end{align} $$ よって、規格化すると $$ \psi(x) = \cfrac{1}{\sqrt{\pi}} \sin x $$ ### (2) $\psi(x) = e^{inx}$ $$ \begin{align} \int_{-\pi}^{\pi} \psi^{*} \psi dx &= \int_{-\pi}^{\pi} e^{inx} \cdot e^{-inx} dx \\ &= \int_{-\pi}^{\pi} 1\ dx \\ &= \left[ x \right]_{-\pi}^{\pi} \\ &= 2 \pi \end{align} $$ よって、規格化すると $$ \psi(x) = \cfrac{1}{\sqrt{2 \pi}} e^{inx} $$ ### (3) $$ \begin{array}{ll} \psi(x) = x & (\textrm{for} \hspace{3mm} x \geq 0) \\ \psi(x) = -x & (\textrm{for} \hspace{3mm} x < 0) \end{array} $$ $x \geq 0$ の場合でも $x < 0$ の場合でも $\psi^{*}\psi = x^2$ となるので、 $$ \begin{align} \int_{-\pi}^{\pi} \psi^{*} \psi dx &= \int_{-\pi}^{\pi} x^2 dx \\ &= \left[ \cfrac{1}{3} x^3 \right]_{-\pi}^{\pi} \\ &= \cfrac{1}{3}(\pi^3 - (- \pi^3)) \\ &= \cfrac{2 \pi^3}{3} \end{align} $$ よって、規格化すると $$ \psi(x) = \pm \sqrt{ \cfrac{3}{2 \pi^3} } x $$ ### Graph 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up