# TD 2 : Calcul tensoriel ## Exercice 1 Soit $\mathbf{u}$ un tenseur de rang un de composantes $$ u_1 = x_1 + x_2 + x_3, \quad u_2 = x_1x_2 + x_2x_3 + x_3\,x_1, \quad u_3\ =\ x_1\,x_2\,x_3. $$ Calculer $\nabla\otimes\mathbf{u}$, $\frac{\partial\mathbf{u}}{\partial \mathbf{x}}$, $\operatorname{grad_g}(\mathbf{u})$, $\operatorname{grad_d}(\mathbf{u})$, $\nabla\cdot\mathbf{u}$, $\operatorname{div}(\mathbf{u})$ et donner leurs analogues matriciels. ### Correction $$\nabla\otimes \mathbf{u} = \operatorname{grad_g}(\mathbf{u}) = \frac{\partial u_j}{\partial x_{i}} \mathbf{e}_i\otimes \mathbf{e}_j.$$ $$[\nabla\otimes \mathbf{u}] = \left( \begin{array}{ccc} 1 & x_2 + x_3 & x_2 x_3 \\ 1 & x_1 + x_3 & x_1 x_3 \\ 1 & x_1 +x_2 & x_1 x_2 \end{array} \right)$$ $$\operatorname{grad_d}(\mathbf{u}) = \frac{\partial\mathbf{u}}{\partial\mathbf{x}} = \frac{\partial u_i}{\partial x_j} \mathbf{e}_i\otimes\mathbf{e}_j = (\nabla\otimes \mathbf{u})^T.$$ $$\nabla\cdot \mathbf{u} = \operatorname{div}(\mathbf{u}) = \frac{\partial u_n}{\partial x_n} = 1+x_1+x_3+x_1x_2.$$ ## Exercice 2 Soit $\mathbb{T}$ un tenseur de rang deux s'identifiant à la matrice $$ [\mathbb{T}]\ =\ \left[ \begin{array}{ccc} x_1 & x_2\,x_3 & x_1\,x_2\,x_3 \\ x_2 & x_3\,x_1 & x_2\,x_3\,x_1 \\ x_3 & x_1\,x_2 & x_3\,x_1\,x_2 \end{array} \right]. $$ Calculer $\nabla\cdot\mathbb{T}$, $\operatorname{div_g}(\mathbb{T})$, $\operatorname{div_d}(\mathbb{T})$ et donner leurs analogues matriciels. ### Correction $$\nabla\cdot \mathbb{T} = \operatorname{div_g}(\mathbb{T}) = \frac{\partial T_{ij}}{\partial x_i}\mathbf{e}_j = T_{ij,i} \mathbf{e}_j$$ $$[\nabla\cdot \mathbb{T}] = \left( \begin{array}{c} 3 \\ 0 \\ x_2x_3 + x_1 x_3 + x_1x_2 \end{array} \right)$$ $$\operatorname{div_d}(\mathbb{T}) = \frac{\partial T_{ij}}{\partial x_j} \mathbf{e}_i$$ $$[\operatorname{div_d}(\mathbb{T})] = \left( \begin{array}{c} 1 + x_3 + x_1 x_2 \\ x_1 x_2 \\ x_1 + x_1 x_2 \end{array} \right)$$ ## Exercice 3 Soit $\mathbf{U}$ et $\mathbb{A}$ deux tenseurs de rangs respectifs un et deux. Démontrer que \begin{align} \nabla\cdot(\mathbb{A}\cdot\mathbf{U})\ &=\ (\operatorname{div_g}\mathbb{A})\cdot\mathbf{U}\ +\ \mathbb{A}\boldsymbol{:} \operatorname{grad_d}\mathbf{U}\ =\ (\operatorname{div_d}\mathbb{A}^T)\cdot\mathbf{U}\ +\ \mathbb{A}\boldsymbol{:} (\operatorname{grad_g}\mathbf{U})^T. \end{align} ### Correction \begin{align} \nabla\cdot(\mathbb{A}\cdot\mathbf{U}) &= \frac{\partial}{\partial x_i} (A_{ij}U_j) = A_{ij,i} U_j + A_{ij} U_{j,i} = (\operatorname{div_g}A)\cdot U + A_{ij} (\operatorname{grad_d}U)_{ji} \\ & = (\operatorname{div_g}A)\cdot U + \mathbf{A}\boldsymbol{:}\operatorname{grad_d}U \\ &= A^T_{ji,i} U_j + A_{ij} U_{j,i} = (\operatorname{div_d}(\mathbb{A}^T))\cdot \mathbf{U} + \mathbf{A}\boldsymbol{:}(\operatorname{grad_g}U)^T \end{align} ## Exercice 4 Soit $\mathbf{U}$ un tenseur de rang un. Démontrer que \begin{align*} (\nabla\otimes\mathbf{U})\cdot\mathbf{U}\ &=\ \frac{1}{2}\,\nabla\otimes(\mathbf{U}\cdot\mathbf{U}), \\ \nabla\cdot(\mathbf{U}\otimes\mathbf{U})\ &=\ (\nabla\cdot\mathbf{U})\,\mathbf{U}\ +\ (\mathbf{U}\cdot\nabla)\,\mathbf{U}, \\ \mathbf{U}\cdot(\nabla\otimes\mathbf{U})\ &=\ (\mathbf{U}\cdot\nabla)\,\mathbf{U}\ =\ \frac{1}{2}\,\nabla(\mathbf{U}\cdot\mathbf{U})\ -\ \mathbf{U}\wedge(\nabla\wedge\mathbf{U}). \end{align*} ### Correction $$(\nabla\otimes\mathbf{U})\cdot\mathbf{U} = U_{j,i} U_j \mathbf{e}_i = \frac{\partial U_j}{\partial x_i}U_j \mathbf{e}_i = \frac{1}{2}\frac{\partial}{\partial x_i}(U_jU_j)\mathbf{e}_i = \frac{1}{2}\nabla\otimes(\mathbf{U}\cdot\mathbf{U})$$ $$\nabla\cdot(\mathbf{U}\otimes\mathbf{U}) = \frac{\partial}{\partial x_i}(U_i U_j)\mathbf{e}_j = U_{i,i} U_j\mathbf{e}_j + U_i U_{j,i}\mathbf{e}_j = (\nabla\cdot \mathbf{U})\mathbf{U} + (\mathbf{U}\cdot \nabla) \mathbf{U} $$ $$\mathbf{U}\cdot(\nabla \otimes \mathbf{U}) = U_iU_{j,i} \mathbf{e}_j = (\mathbf{U}\cdot\nabla)\mathbf{U}$$ $$\mathbf{a}\wedge(\mathbf{b}\wedge\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b}-(\mathbf{a}\cdot\mathbf{b})\mathbf{c} = a_ib_jc_i\mathbf{e}_j - a_ib_ic_j\mathbf{e}_j $$ \begin{align} \mathbf{U}\wedge(\nabla\wedge\mathbf{U}) &= U_iU_{i,j}\mathbf{e}_j - U_iU_{j,i}\mathbf{e}_j = \frac{1}{2}\nabla(\mathbf{U}\cdot\mathbf{U}) - (\mathbf{U}\cdot\nabla)\mathbf{U} \\ &= (\nabla\otimes\mathbf{U})\cdot \mathbf{U} - \mathbf{U}\cdot(\nabla\otimes\mathbf{U}) \end{align}