# Simple Crypto - 0x01(Modular Operation) ###### tags: `CTF` `Crypto` `eductf` ## Background [『Day 23密碼卷宗現代篇非對稱章 - RSA](https://ithelp.ithome.com.tw/articles/10225768) [模运算与逆元](https://blog.csdn.net/lion19930924/article/details/61926019) 模運算基本特性: $$ (a + b) \% p = (a \% p + b \% p) \% p \\ (a - b) \% p = (a \% p - b \% p) \% p \\ (a * b) \% p = (a \% p * b \% p) \% p \\ (a ^ b) \% p = ((a \% p) ^ b ) \% p $$ 模運算的结合律: $$ ((a + b) \% p + c) \% p= (a + (b + c) \% p) \% p \\ ((a * b) \% p * c) \% p = (a * (b * c) \% p ) \% p $$ 交換律: $$ (a + b) \% p = (b+a) \% p \\ (a * b) \% p = (b * a) \% p $$ 分配率: $$ ((a +b) \% p * c) \% p = ((a * c) \% p + (b * c) \% p) \% p $$ [同餘要進行除法時該怎麼處理](https://youtu.be/gKUUI5gQs_k) 基本數學 [What does a|b mean in mathematics?](https://www.quora.com/What-does-a-b-mean-in-mathematics) ## Source Code ### Analysis ## Exploit ## Reference