# Inverse Derivative formula :::info **Prove.** Given inverse functions $f(x)$ and $g(x)$, the derivative $g^\prime(x)$ is given by $$ g^\prime(x) = \frac{1}{f^\prime(g(x))} $$ ::: **Proof.** Let $f(x)$ and $g(x)$ be inverse functions so that, $$f(g(x)) = x.$$ Notice that the derivative of both sides yields, $$ \begin{align*} \frac{\text{d}}{\text{d}x}\bigg[f(g(x))\bigg] &= \frac{\text{d}}{\text{d}x}\big[x\big] \\ f^\prime(g(x)) \cdot g^\prime(x) &= 1 \\ g^\prime(x) &= \frac{1}{f^\prime(g(x))} \end{align*} $$