--- type: slide --- ### Foundation Model Assisted Weakly Supervised Semantic Segmentation --- #### Methods - **CLIP**: Used with frozen weights for image classification and seed segmentation tasks. - **SAM**: Provides class-agnostic object masks, improving the precision of segmentation seeds. --- #### Framework Overview ![image](https://hackmd.io/_uploads/H1lXidXL-A.png) --- #### SAM-based seeding module - Quasi-superpixel generation - lower threshold $t_{m,whole}$ to retrieve more masks at the *whole* level - prioritze the selection of the *whole* level - apply filter - Quasi-superpixel classification - seed map generation --- #### Quasi-superpixel generartion ![image](https://hackmd.io/_uploads/B1JtFm8WC.png) --- - Quasi-superpixel classification foerground: ![image](https://hackmd.io/_uploads/SJWK5XUW0.png) background: ![image](https://hackmd.io/_uploads/SJu95XU-A.png) semantic class: ![image](https://hackmd.io/_uploads/rkci5XIZ0.png) - seed map generation --- - Experimental result ![image](https://hackmd.io/_uploads/S1XuDzL-R.png) --- ---