--- tags: HSNL, NCKU --- # Fairness contributed by <`RusselCK` > ###### tags: `RusselCK` - [ ] [Fairness in Wireless Networks:Issues, Measures and Challenges](https://ieeexplore.ieee.org/document/6517050) - [ ] [Fair end-to-end window-based congestion control](https://ieeexplore.ieee.org/document/879343) - [ ] [Cross-layer optimization for OFDM wireless networks-part I: Theoretical framework](https://ieeexplore.ieee.org/document/1413227) - [ ] [Multi-resource allocation is measured by proportional fairness](http://www.statslab.cam.ac.uk/~frank/elastic.pdf) - [ ] [Rate control for communication networks: shadow prices, proportional fairness and stability](http://www.statslab.cam.ac.uk/~frank/rate.pdf) [18] - [ ] [Charging and rate control for elastic traffic](http://www.statslab.cam.ac.uk/~frank/elastic.pdf) [17] ## Introduction 發生 unfairness ,該如何解決? 1. 在本輪補償 上一輪的弱勢 2. 重新分配資源,不進行補償 假設: * 只有一種 Resource 要分配,且總量為 $C$ * 分給 $n$ 個人(individual),每個人拿 $x_i$ $X = (x_1, x_2,...,x_n)$ : 資源分配 :::info * $X$ is **feasible** $\Leftrightarrow$ 每個人一次只能分配一定數量的資源 >A feasible allocation indicates that every individual can only be allocated a certain amount of resource once $\Leftrightarrow$ $x_i \geq 0$ and $\sum_{i=1}^nx_i \leq C$ ::: 範例用圖: ( Resource : network capacity ) ![](https://i.imgur.com/Ksg4Jnk.png) ## Qualitative Fairness Measures * 無法以 實數 來表示 measurement of fairness * 可以評斷 allocation 是否達到 fairness * 可以 give guidance for resource allocation >Qualitative fairness measures are not able to provide a measurement of fairness with a real number representation however, they can judge whether the allocations achieve fairness and give guidance for resource allocation ### Max-min Fairness :::info * A feasible $X$ is **max-min fair** $\Leftrightarrow$ $\forall i,$ $x_i$ cannot be increased (while maintaining the feasibility) without decreasing $x_j$, where $x_j⩽x_i,(i≠j)$ ::: 在 feasible $X$ 中,對所有 $i$ 來說 若 無法在 **不減少 $x_j$** 的情況下來 **增加 $x_i$**,$x_j⩽x_i,(i≠j)$,則 $X$ 為 max-min fair >A system reaches max-min fairness, if it cannot increase any individual's resource without decreasing another individual's resource allocation which is already less than the previous ones :::warning * 不論 $x_i$ 多大,都不會增加 * 不論 $x_j$ 多小,都能得到補償 ::: 對所有 $x_i$ 來說,都只能透過 減少比自己大的人 來 增加自己 也就是說,==大家分配到的會一樣多== #### 舉例 * 若 $X$ = (A,B,C,D,E) = (10%,20%,30%,30%,10%),則 $X$ 不為 max-min fair * A 可以透過減少 B 來 增加自己,且 B > A * 若 $X$ = (A,B,C,D,E) = (20%,20%,20%,20%,20%),則 $X$ 為 max-min fair * 沒有一個人可以增加其容量而不降低其他比自己多的節點的容量 > none of the nodes can increase its capacity without decreasing the capacity of other nodes which is no more than its own capacity. ### Proportional Fairness Multi-resource allocation is measured by proportional fairness ( 這裡只寫 1 resource 的 定義 ) :::info * A feasible $X$ is **proportionally-fair** $\Leftrightarrow$ For any other allocation $x^∗_i$ , the sum of differences between $x^∗_i$ and $x_i$ (proportional changes) is zero or negative . That is, $X^* = (x_1^*, x_2^*,...,x_n^*)$: any other allocation, $$ \sum_{i=1}^{n} \frac{x^∗_i - x_i}{x_i} \leq 0 $$ ::: :::warning * $\sum_{i=1}^{n} \frac{x^∗_i - x_i}{x_i} \leq 0$ is equivalent to $max (\sum_{i=1}^{n}logx_i)$ ![](https://i.imgur.com/PhekwXJ.jpg) > A convex increasing function > $f(x)=log(x) \rightarrow −∞ \space as \space x \rightarrow 0$ > $f'(x)=log(x) \rightarrow ∞ \space as \space x \rightarrow 0$ ![](https://i.imgur.com/waQOa7G.png) - [ ] [Time scale analysis and scalability issues for explicit rate allocation in ATM networks](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=532866) - [ ] [Integration of pricing and flow control for available bit rate services in ATM networks](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=594441) ::: * An equal allocation (i.e., $x_i=x_k,∀i,k$, where $i≠k$) achieves proportional fairness > Proportional fairness is robust and can achieve a better trade-off between utilities than maxmin fairness when particular utility-metrics are used in rate allocation in ad hoc networks - [ ] [Rate control for communication networks: shadow prices, proportional fairness and stability](http://www.statslab.cam.ac.uk/~frank/rate.pdf) - [ ] [Nash bargaining solution](https://en.wikipedia.org/wiki/Bargaining_problem#Nash_bargaining_solution) ### (p,α)-proportional Fairness A generalized form of proportional fairness :::info * $p$ : weight of indivisual * $\alpha$ : a positive number * A feasible $X$ is **(p,α)-proportionally-fair** $\Leftrightarrow$ For any other allocation ,$X^* = (x_1^*, x_2^*,...,x_n^*)$, $$ \sum_{i=1}^{n} p \frac{x^∗_i - x_i}{(x_i)^α} \leq 0 $$ ::: * $p$ provides flexibility and controllability during allocation * $p$ helps in tuning the allocation based on other parameters such as cost ### An optimization problem :::warning * $X$ is **(p,α)-proportionally-fair** $\Leftrightarrow$ $X$ reaches maximal utility $\sum_{i=1}^{n}p \cdot u_α(x_i)$,where $$ u_α(x) = \begin{cases} logx & \text{ if } α= 1 \\ \frac{x^{(1-α)}}{(1-α)} & \text{ if } α \neq 1 \end{cases} $$ ::: * when $α = 1$ ,(p,α)-proportional fairness reduces to **proportional fairness** * when $α \rightarrow \infty$ ,(p,α)-proportional fairness converges to **max-min fairness** #### 證明 - [ ] [拉格朗日乘數](https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E4%B9%98%E6%95%B0) The [**compactness**](https://en.wikipedia.org/wiki/Compact_space) and [**convexity**](https://en.wikipedia.org/wiki/Concave_function) of the feasible region for $X$ imply that such a vector exists, and is unique. <iframe src="https://www.geogebra.org/calculator/j7rjxfeg?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> ![](https://i.imgur.com/eKBtbwH.jpg) :::warning 【Lemma 3】 * If $h(x)$ is a **differentiable increasing concave negative function** when $x \geq 0$, the solution of $max \sum_{i}p_if_\alpha(x_i)$ with $f_\alpha = -(-h)^\alpha$ approaches the **max–min fair rate vector** as $\alpha \rightarrow \infty$. ::: $\because$ $f_\alpha(x) = \frac{x^{(1-α)}}{(1-α)} = -(\frac{1}{α-1})(\frac{1}{x})^{α-1}$ satisfies the conditions of Lemma 3 with $h(x) = -(\frac{1}{x})$ $\therefore$ when $α \rightarrow \infty$ ,(p,α)-proportional fairness converges to **max-min fairness** ![](https://i.imgur.com/QHuvaID.png)