# Rules of Asymptotic Notation #### Dropping the coefficient $$ cf(n)=\Theta(f(n)) \tag{where $c$ is any positive constant} $$ Given a function multiplied to some constant, $cf(n)$, its complexity is exactly the same as $f(n)$. This property can easily be demonstrated using the limit definition of $\Theta$. $$ \lim_{n \to \infty}{\frac{cf(n)}{f(n)}}=\lim_{n \to \infty}{c}=c $$ #### Higher degree polynomial $$ f(n)^c=o(f(n)^d) \tag{for any $c<d$} $$ Given $f(n)^c$ and $f(n)^d$ where $c$ and $d$ are constants and $c<d$, $f(n)^c$ is less complex than $f(n)^d$ $$ \begin{align*} \lim_{n \to \infty}{\frac{f(n)^c}{f(n)^d}}&=\lim_{n \to \infty}{\frac{cf(n)^{c-1}\frac{d}{d n}f(x)}{df(n)^{d-1}\frac{d}{d n}f(x)}} \tag{for any $c<d$}\\ &=\lim_{n \to \infty}{\frac{cf(n)^{c-1}}{df(n)^{d-1}}}\\ &=\lim_{n \to \infty}{\frac{c(c-1)f(n)^{c-2}}{d(d-1)f(n)^{d-2}}}\\ &\vdots\\ &=\lim_{n \to \infty}{\frac{c(c-1)(c-2)(c-3)\cdots(c-k)}{d(d-1)(d-2)(c-3)\cdots(d-k)f(n)^{d-(k+1)}}}\\ \lim_{n \to \infty}{\frac{f(n)^c}{f(n)^d}}&=\infty \end{align*} $$ #### Sum of functions $$ f(n)+g(n)=\Theta(f(n)) \tag{for any $f(n)=\Omega(g(n))$} $$ In a sum of functions, the most complex function dominates the sum therefore the overall complexity will be equal to the dominant function. This can be shown using the set definitions. Since $f(n) = \Omega(f(n))$, $$ \begin{align*} f(n)&\geq cf(n) \tag{where $n>n_0$}\\ f(n) +g(n)&\geq cf(n) \tag{since $g(n)>0$} \end{align*} $$ > adding $g(n)$ to the left hand side of the inequality does not change the inequalityy relationship since $g(n)$ is positive (meaning, adding $g(n)$ can only result to increasing the value of the already bigger value) Therefore, $$ f(n)+g(n)=\Omega(f(n)) $$ Also since $g(n)=O(f(n)),$ $$ \begin{align*} g(n)&\leq cf(n) \\ f(n)+g(n)&\leq cf(n) + f(n)\\ f(n)+g(n)&\leq (c+1)f(n)\\ \end{align*} $$ Therefore, $$ f(n)+g(n)=O(f(n)) $$ And since $f(n)+g(n)=\Omega(f(n)) \land f(n) + g(n) = O(f(n))$, $$ f(n)+g(n)=\Theta(f(n)) $$ #### Different bases on log Bases for logarithms doesn't matter in terms of asymptotic notation therefore $\log_b{n}$ for any base is of complexity class $\Theta(\log n)$ $$ \begin{align*} \lim_{n \to \infty} {\frac{\log_a{n}}{\log_b{n}}}&=\lim_{n \to \infty} {\frac{\frac{\log_b{n}}{\log_b{a}}}{\log_b{n}}}\\ &=\lim_{n \to \infty} {\frac{\log_b{n}}{\log_b{n}(\log_b{a})}}\\ &=\lim_{n \to \infty} {\frac{1}{\log_b{a}}}\\ \lim_{n \to \infty} {\frac{\log_a{n}}{\log_b{n}}}&=\frac{1}{\log_b{a}} \end{align*} $$ #### Different bases on exponential functions $$ a^n=\omicron(b^n) \tag{for any $a<b$} $$ Bases for exponential functions on the other hand matter, as shown in this proof: $$ \begin{align*} \lim_{x \to \infty}{\frac{a^n}{b^n}}&=\lim_{x \to \infty}{\frac{a^n}{(a^{\log_{a}b})^n}}\\ &=\lim_{x \to \infty}{\frac{a^n}{(a^n)^{\log_{a}b}}}\\ &=\lim_{x \to \infty}{(a^n)^{1-\log_{a}b}}\\ \end{align*} $$ since $b>a$,$1-\log_a b<0$, $$ \lim_{x \to \infty}{\frac{a^n}{b^n}}=0 $$