# Pre Exam Practice Questions Answer Key 1. $i(n)$, $f(n)$, $g(n)$, $j(n)$, note that $g(n) \in \Theta(j(n))$ > To solve this you sometimes need to use the limit definition for the compound functions. > > - $f(n)$ is quadratic, > - $g(n)$ is exponential > - $i(n)$ is logarithmic (find the most complex term using the limit definition) > - $j(n)$ is exponential > > You'll also find that after applying change of base to the exponential functions, they are the same function. 2. Only choice **b** is true > $$ > \begin{aligned} > \lim_{n \to \infty} {\frac{f(n)g(n)}{f(n)}} &= \lim_{n \to \infty} {\frac{\cancel{f(n)}g(n)}{\cancel{f(n)}}} > \\&=\lim_{n \to \infty}{g(n)} > \\&= \infty > \end{aligned} > $$ 3. **g**; a, b and c are all true > Since $f(n) \in O(g(n))$, then $\lim_{n \to \infty}{\frac{f(n)}{g(n)}} < \infty$, which implies $\lim_{n \to \infty}{\frac{f(n)}{g(n)}} \neq \infty$ (which makes choice a true). It also implies $\lim_{n \to \infty}{\frac{g(n)}{f(n)}} > 0$ (which makes choice b true). Applying the sum rule, we find choice c to be true as well 4. **e**; only b and c are true > You can solve for the determinant of the transformation matrix formed by these set of basis vectors > > - $\det(\begin{bmatrix}a&b\\b&a\end{bmatrix})=a^2-b^2$ > - $\det(\begin{bmatrix}c&b\\-c&-b\end{bmatrix})=-bc+bc=0$ > - $\det(\begin{bmatrix}-a&a\\b&-b\end{bmatrix})=ab-ab=0$ 5. $$ \begin{aligned} A^{-1}=\begin{bmatrix} -\frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ -\frac{5}{7} & -\frac{3}{7} & \frac{1}{7} \\ 1 & 1 & 0 \\ \end{bmatrix} \end{aligned} $$ 6. $$ \begin{aligned} \det(A^{-1}) = -\frac{1}{7} \end{aligned} $$ 7. $u^2 \det(B)$ > Given a general 2x2 transformation $B = \begin{bmatrix}a&b\\c&d\end{bmatrix}$ > $$ > \begin{aligned} > B &= \begin{bmatrix}a&b\\c&d\end{bmatrix}\\ > uB &= \begin{bmatrix}ua&ub\\uc&ud\end{bmatrix}\\ > \det(uB) &= u^2 ad - u^2 bc\\ > \det(uB) &= u^2 (ad - bc)\\ > \det(uB) &= u^2 \det(B) > \end{aligned} > $$ 8. $T \vec{p}=\begin{bmatrix}-2\\7 \end{bmatrix}$ 9. $T \vec{q}=\begin{bmatrix}-6\\0 \end{bmatrix}$ 10. $TT \vec{r}=\begin{bmatrix}-12\\0 \end{bmatrix}$ 11. Solution > $$ > \begin{aligned} > \det(\begin{bmatrix}-1-\lambda & 2\\3 & 1-\lambda \\\end{bmatrix}) &=0\\ > (-1-\lambda)(1-\lambda) -6&=0\\ > \lambda^2 -7 &=0\\ > \\ > \lambda&=\frac{0\pm \sqrt{0^2 - 4(1)(-7)}}{2(1)}\\ > \lambda &= \pm \sqrt{7} > \end{aligned} > $$ > > With eigenvalues $\lambda = \sqrt{7}$ and $\lambda = -\sqrt{7}$ we can solve for the eigenvectors > $$ > \begin{aligned} > \lambda = \sqrt{7}\\ > \begin{bmatrix}-1 & 2\\3 & 1 \\\end{bmatrix}\vec{v}&=\sqrt{7}\vec{v}\\ > \begin{bmatrix}-1 & 2\\3 & 1 \\\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}&=\sqrt{7}\begin{bmatrix}x\\y\end{bmatrix}\\\\ > -x+2y&=\sqrt{7}x\\ > 3x+y&=\sqrt{7}y\\ > \end{aligned} > $$ > Solving for $x$ we get: > $$ > \begin{aligned} > y &= \frac{1+\sqrt{7}}{2}x > \end{aligned} > $$ > Which gives us the eigenvectors $\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x\\\frac{1+\sqrt{7}}{2}x\end{bmatrix}$ (the form $\begin{bmatrix}\frac{1-\sqrt{7}}{-3}y\\y\end{bmatrix}$ is also correct) > $$ > \begin{aligned} > \lambda = -\sqrt{7}\\ > \begin{bmatrix}-1 & 2\\3 & 1 \\\end{bmatrix}\vec{v}&=-\sqrt{7}\vec{v}\\ > \begin{bmatrix}-1 & 2\\3 & 1 \\\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}&=-\sqrt{7}\begin{bmatrix}x\\y\end{bmatrix}\\\\ > -x+2y&=-\sqrt{7}x\\ > 3x+y&=-\sqrt{7}y\\ > \end{aligned} > $$ > Solving for $x$ we get: > $$ > \begin{aligned} > y &= \frac{1-\sqrt{7}}{2}x > \end{aligned} > $$ > Which gives us the eigenvectors $\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x\\\frac{1-\sqrt{7}}{2}x\end{bmatrix}$ (the form $\begin{bmatrix}\frac{1+\sqrt{7}}{-3}y\\y\end{bmatrix}$ is also correct) 12. Solution: > $$ > \begin{aligned} > \det(\begin{bmatrix}1-\lambda & a\\a & 1-\lambda \\\end{bmatrix}) &=0\\ > (1-\lambda)^2 -a^2&=0\\ > (1-\lambda-a)(1-\lambda+a) &=0\\\\ > 1-\lambda-a&=0\\ > 1-a &= \lambda\\\\ > 1-\lambda+a&=0\\ > 1+a&=\lambda > \end{aligned} > $$ > > With eigenvalues $\lambda = 1-a$ and $\lambda = 1+a$ we can solve for the eigenvectors > $$ > \begin{aligned} > \lambda = 1-a\\ > \begin{bmatrix}1 & a\\a & 1 \\\end{bmatrix}\vec{v}&=(1-a)\vec{v}\\ > \begin{bmatrix}1 & a\\a & 1 \\\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}&=(1-a)\begin{bmatrix}x\\y\end{bmatrix}\\\\ > x+ay&=x-ax\\ > ax+y&=y-ay\\ > \end{aligned} > $$ > Solving for $x$ we get: > $$ > \begin{aligned} > y &= -x > \end{aligned} > $$ > Which gives us the eigenvectors $\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x\\-x\end{bmatrix}$ (the form $\begin{bmatrix}-y\\y\end{bmatrix}$ is also correct) > $$ > \begin{aligned} > \lambda = 1+a\\ > \begin{bmatrix}1 & a\\a & 1 \\\end{bmatrix}\vec{v}&=(1+a)\vec{v}\\ > \begin{bmatrix}1 & a\\a & 1 \\\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}&=(1+a)\begin{bmatrix}x\\y\end{bmatrix}\\\\ > x+ay&=x+ax\\ > ax+y&=y+ay\\ > \end{aligned} > $$ > Solving for $x$ we get: > $$ > \begin{aligned} > y &= x > \end{aligned} > $$ > Which gives us the eigenvectors $\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}x\\x\end{bmatrix}$ 13. | | $\vec{s}$ | $\vec{t}$ | $\vec{u}$ | $\vec{v}$ | | --------- | ------------------- | -------------------- | ------------------- | --------- | | $\vec{s}$ | | | | | | $\vec{t}$ | $\vec{s}.\vec{t}=3$ | | | | | $\vec{u}$ | $\vec{s}.\vec{u}=0$ | $\vec{t}.\vec{u}=-1$ | | | | $\vec{v}$ | $\vec{s}.\vec{v}=2$ | $\vec{t}.\vec{v}=5$ | $\vec{u}.\vec{v}=0$ | |
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up