[TOC] # Vector Algebra ## Scalar or Dot Product ![圖片](https://hackmd.io/_uploads/rye7dpNfLke.png) ![圖片](https://hackmd.io/_uploads/r1qt6VMIyg.png) ![圖片](https://hackmd.io/_uploads/BJ1_RNzI1g.png) ![圖片](https://hackmd.io/_uploads/r1ztREMIkx.png) ## Coordinate Systems ![圖片](https://hackmd.io/_uploads/ryfe1rGUkx.png) ![圖片](https://hackmd.io/_uploads/SJzbJSfLJl.png) ![圖片](https://hackmd.io/_uploads/BySMkBGUke.png) ![圖片](https://hackmd.io/_uploads/HJZ4krfUyg.png) ![圖片](https://hackmd.io/_uploads/BkVvkSGIyg.png) ![圖片](https://hackmd.io/_uploads/H1rdJSfUye.png) ![圖片](https://hackmd.io/_uploads/r1hcySzI1e.png) ![圖片](https://hackmd.io/_uploads/rJhikSMU1g.png) ![圖片](https://hackmd.io/_uploads/BJt6kHGL1e.png) ![圖片](https://hackmd.io/_uploads/H1qCJHf8Jg.png) ![圖片](https://hackmd.io/_uploads/HkGelBMUkg.png) ![圖片](https://hackmd.io/_uploads/HJnWlHMIJe.png) ![圖片](https://hackmd.io/_uploads/rk7blSzLyg.png) ![圖片](https://hackmd.io/_uploads/r1FzeBMLJx.png) ![圖片](https://hackmd.io/_uploads/SJ8QerMLkx.png) ![圖片](https://hackmd.io/_uploads/SkurlBfLye.png) ![圖片](https://hackmd.io/_uploads/BkJtgHfLyl.png) ![圖片](https://hackmd.io/_uploads/H1T5lrGLyl.png) ![圖片](https://hackmd.io/_uploads/rJNrZSMUke.png) ![圖片](https://hackmd.io/_uploads/HysUXHfIJg.png) # Vector Calculus - **向量微積分涉及對向量進行微積分運算的應用。<br>即使不涉及電磁學,我們也將展示這些定義是對熟悉概念的簡單擴展,並簡化了許多計算中的重要方面。<br>特別討論線積分、表面積分和體積積分的概念,以及梯度、散度和旋度的基本概念,還有散度定理和斯托克斯定理。這些概念對理解電磁場具有基礎性的重要性。與向量代數一樣,運算和概念數量相對較少。** ## Line Integrals :::info **在定義線積分之前,考慮一個非常簡單的例子,即計算由力所做的功,如圖 2.1a 所示。假設這個力是空間依賴的,並且在平面內朝著任意方向作用。為了計算這個力所做的功,可以將這個力分解成它的兩個分量並寫出來。** ::: ![圖片](https://hackmd.io/_uploads/S1hxJHy4ye.png) ![圖片](https://hackmd.io/_uploads/HJnnvHGI1l.png) ![圖片](https://hackmd.io/_uploads/Skgs5BfL1e.png) ![圖片](https://hackmd.io/_uploads/HyE06BMI1g.png) ## Example ![圖片](https://hackmd.io/_uploads/r1FS0rfIkg.png) ![圖片](https://hackmd.io/_uploads/rJtBx8fL1e.png) ## Surface Integrals ![圖片](https://hackmd.io/_uploads/rk8De8zIyg.png) ![圖片](https://hackmd.io/_uploads/HJeI-LzLJx.png) ![圖片](https://hackmd.io/_uploads/SJPI-LGUyg.png) ![圖片](https://hackmd.io/_uploads/SkMBbLG8kg.png) ![圖片](https://hackmd.io/_uploads/ryY5-8MI1g.png) ![圖片](https://hackmd.io/_uploads/Sk4tNLzUke.png) <!--## Volume Integrals --> ## Gradient(梯度), $\nabla$ - **依據泰勒展開如果有一個點$V(x,y,z)$另有一點$V'(x+dx,y+dy,z+dz)$時,$V'=V+dV。$** $$ V'=V(x,y,z)+\frac{\partial V}{\partial x}dx+\frac{\partial V}{\partial y}dy+\frac{\partial V}{\partial z}dz...\approx V+dV \quad (Eq 2.1) $$ ![圖片](https://hackmd.io/_uploads/ryL-Bw_Vkg.png) $$ \nabla=\frac{\partial }{\partial x}a\hat x+\frac{\partial }{\partial y}a\hat y+\frac{\partial }{\partial z}a\hat z $$ ## Divergence(散度), $\nabla\cdot \vec{F}$ - *Divergence Theorem (散度定理):* $$ \nabla \cdot\vec{A}=\lim_{\Delta V \to 0}\frac{\oint_s\vec{A}d\vec{s}}{\Delta V} $$ - **一個點函數,作用於一個點。因為 $\Delta V\to0$** ![圖片](https://hackmd.io/_uploads/SJ4yedOV1x.png) $$ \int(\nabla\cdot\vec{A})dv=\oint_s\vec{A}\cdot d\vec{s} $$ $$ \begin{aligned} \int(\nabla\cdot\vec{A})dv&=(\int_{up}..\int_{right})\vec{A}d\vec{s} \\ \end{aligned} $$ ![圖片](https://hackmd.io/_uploads/r1ydVOOEyl.png) ![圖片](https://hackmd.io/_uploads/BkA_E_OVkl.png) ## Curl(旋度), $\nabla\times \vec{F}$ - *Stokes' Theorem:* $$ \int(\nabla\times\vec{A})d\vec{s}=\oint_c\vec{A}\cdot d\vec{l} $$ ![圖片](https://hackmd.io/_uploads/Byr7DuOVJl.png) ![圖片](https://hackmd.io/_uploads/ryfND__Eyx.png) ![圖片](https://hackmd.io/_uploads/SkkHPuOEyl.png) ![圖片](https://hackmd.io/_uploads/S13BvOd4Jg.png) ![圖片](https://hackmd.io/_uploads/B12Iv_dN1x.png) # 散度定理 ![圖片](https://hackmd.io/_uploads/BJ5KbDMIJl.png) ![圖片](https://hackmd.io/_uploads/BySIhsGIkl.png) # 靜電學 ## Coulomb's law $$ \vec{F}=a\hat{r_{12}}\cdot k\frac{q_1\cdot q_2}{R^2} $$ $$ \vec{E}=\frac{\vec{F}}{q} $$ ![圖片](https://hackmd.io/_uploads/rknE4H1EJx.png) - **By organizing the figure above and combining it with basic mechanics formulas, the following results are obtained.** |$q_1\cdot q_2$|$\vec{F_e}$| |--:|--:| |$\frac{++}{--}>0$|$a\hat{r_{12}}$&emsp;*排斥*| |$\frac{+-}{-+}<0$|$-a\hat{r_{12}}$&emsp;*吸引*| ### Example - **找距離電荷R處之電場?A=5 C, B=50 C** >[!Note]Solution >A&emsp;=>&emsp;$q_{t_A}=\ \ 5(C),$&emsp;$\vec{F_A}=\ \ 5\cdot \frac{kq}{R^2}a\hat{r_{12}}$ >B&emsp;=>&emsp;$q_{t_B}=50(C),$&emsp;$\vec{F_B}=50\cdot \frac{kq}{R^2}a\hat{r_{12}}$ >$\vec{E}\ =\ \frac{\vec{F}}{q}\ =\ \frac{5}{5}=\frac{50}{50}=1$ (N/C) - **相同電場、相同距離所受的電場相同。** ## Gauss' law $$ \nabla \cdot\vec{E}=\oint_s\vec{E}\cdot d\vec{s} \qquad (3.3) $$ $$ \nabla \times \vec{F}=0 \qquad(3.4) $$ - Below are the definitions for some variables.<br> $\rho:charge\ density$ <br> $\rho_l:linear\ charge\ density$<br> $\rho_s:surface\ charge\ density$<br> $\rho_v:volume\ charge\ density$<br> ### Proof - **Show that equation 3.3** $$ \int(\nabla\cdot\vec{E})dv=\frac{\rho_v}{\varepsilon_0}\int dv $$ $$ \qquad\qquad=\frac{1}{\varepsilon_0}\frac{C}{m^3}m^3 $$ $$ \qquad=\frac{1}{\varepsilon_0}C $$ $$ \qquad\ \ =\frac{1}{\varepsilon_0}Q_{in} $$ $$ \ \ =\psi $$ - **Show that equation 3.4** <br>With Divergence Theorem: $$ \int(\nabla\times\vec{E})=\int0d\vec{s} $$ $$ \oint_c\vec{E}d\vec{l}=0 $$ ## 庫倫 ![圖片](https://hackmd.io/_uploads/ryxdC2zIJx.png) ![圖片](https://hackmd.io/_uploads/Sk2OAnz8kx.png) ![圖片](https://hackmd.io/_uploads/S1IVJpzUJe.png) ![圖片](https://hackmd.io/_uploads/ryc9kTfLkl.png) ## 高斯 ![圖片](https://hackmd.io/_uploads/SJ8N-pM8kx.png) ![圖片](https://hackmd.io/_uploads/SyO8x6fIJe.png) ![圖片](https://hackmd.io/_uploads/rkjMZ6fI1g.png) ![圖片](https://hackmd.io/_uploads/S1YvbpfIJe.png) ![圖片](https://hackmd.io/_uploads/BydYbpGIJg.png) ![圖片](https://hackmd.io/_uploads/HkBobaMUJe.png) ![圖片](https://hackmd.io/_uploads/H173-pfLke.png)