# 2021 Homework1: RISC-V Assembly and Instruction Pipeline ###### tags: `2021 computer architecture` [Assignment1: RISC-V Assembly and Instruction Pipeline](https://hackmd.io/@sysprog/2021-arch-homework1) [Lab1: RV32I Simulator](https://hackmd.io/@sysprog/H1TpVYMdB) ## Introduction I choose the problem [Leetcode912](https://leetcode.com/problems/sort-an-array/). Example: - Input: nums = [5,2,3,1] - Output: [1,2,3,5] ## QuickSort To solve this problem, I use the **Quick Sort**, which is O(nlogn) sort algorithm in average case. [Reference Website](https://alrightchiu.github.io/SecondRound/comparison-sort-quick-sortkuai-su-pai-xu-fa.html) - Quick Sort - Quick Sort is based on **Divide & Conquer** - Quick Sort Step 1. Choose a number in array as a **pivot**, and we need to make all the numbers on the left of the pivot are smaller than the pivot, all the numbers on the right of the pivot are bigger than the pivot. 2. Next, look upon all numbers on the left of the pivot as **new array**, and do the same in numbers on the right side. 3. Repeat the step 1 and 2, until you can't divide more small array. ![](https://i.imgur.com/UMB3lUS.png) ## C code (quicksort.c) The following is the code of quick sort which I implement in C. I choose the arr[lb] as a pivot, **lb** means **left bound** ```C= #include <stdio.h> #define numsize 10 void quick_sort(int* number, int lb, int rb); int* sortArray(int* nums, int numsSize, int* returnSize); int main(void){ int arr[numsize] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; printf("Before sorting: "); for(int i = 0; i < numsize; i++) printf("%d\t", *(arr + i)); int returnSize; int* res = sortArray(arr, numsize, &returnSize); printf("\nAfter sorting: "); for(int i = 0; i < numsize; i++) printf("%d\t", *(res + i)); printf("\n"); return 0; } int* sortArray(int* nums, int numsSize, int* returnSize){ *returnSize = numsSize; quick_sort(nums, 0, *returnSize - 1); return nums; } void quick_sort(int* number, int lb, int rb){ if(lb >= rb) return ; int pivot = number[lb], l = lb, r = rb; while(l != r){ while( pivot < *(number + r) && l < r) r--; while( pivot >= *(number + l) && l < r) l++; if(l < r){ *(number + l) ^= *(number + r); *(number + r) ^= *(number + l); *(number + l) ^= *(number + r); } } *(number + lb) = *(number + l); *(number + l) = pivot; quick_sort(number, lb, l - 1); quick_sort(number, l + 1, rb); } ``` ## Assembly Code (quicksort.s) The following is the code of quick sort which I implement in assembly. - How to use &rarr; Just modify **number** and **numbersize** in .data ```shell .data numsize: .word 13 number: .word 5, 6, 8, 4, 2, -1, 20, 1531, 5132132, -5, 2147483647, 325, -521 bfstr: .string "Before sorting " afstr: .string "After sorting " space: .string " " nextline: .string "\n" .text main: # print bfstr la a0, bfstr # Load address of bfstr addi a7, x0, 4 # a7 = 4 print_str ecall # print arr la a0, number la a1, numsize jal ra, PrintArr # quick sort la a0, number # a0 = &number[0] addi a1, x0, 0 # a1 = lb = 0 la a2, numsize # a2 = &rb lw a2, 0(a2) # a2 = rb addi a2, a2, -1 # a2 = rb = numsize - 1 jal ra, QuickSort # print afstr la a0, afstr # Load address of bfstr addi a7, x0, 4 # a7 = 4 print_str ecall # print arr la a0, number la a1, numsize jal ra, PrintArr li a7, 10 #call system to end the program ecall QuickSort: # sp : ra # sp + 4 : s0 = &arr # sp + 8 : s1 = lb # sp + 12: s2 = rb # sp + 16: s3 = pivot # sp + 20: s4 = l # sp + 24: s5 = r # Store saved register addi sp, sp, -28 sw ra, 0(sp) # store ra sw s0, 4(sp) # store s0 = &arr sw s1, 8(sp) # store s1 = lb sw s2, 12(sp) # store s2 = rb sw s3, 16(sp) # store s3 = pivot sw s4, 20(sp) # store s4 = l sw s5, 24(sp) # store s5 = r mv s0, a0 # s0 = &number[0] mv s1, a1 # s1 = lb mv s2, a2 # s2 = rb mv s4, a1 # l = lb mv s5, a2 # r = rb bge s1, s2, EndQuickSort # if lb >= rb, return number mv t0, s0 # t0 = &arr[0] mv t1, s1 # t1 = lb slli t1, t1, 2 # t1 = t1 << 2 add t0, t0, t1 # addr of number[lb] = addr of number[0] + lb << 2 lw s3, 0(t0) # s3 = pivot = number[lb] WhileLoop: # while (l != r) beq s4, s5, EndSortLoop # if l == r ,goto EndSortLoop mv t0, s0 # t0 = &number[0] mv t1, s5 # t1 = r mv t2, s4 # t2 = l slli t1, t1, 2 # t1 = t1 << 2 slli t2, t2, 2 # t2 = t2 << 2 add t1, t0, t1 # addr of number[r] = addr of number[0] + r << 2 lw t1, 0(t1) # t1 = *(number + r) add t2, t0, t2 # addr of number[l] = addr of number[0] + l << 2 lw t2, 0(t2) # t2 = *(number + l) rLoop: bge s3, t1, lLoop # if pivot >= *(number + r), break rLoop bge s4, s5, lLoop # if l >= r, break rLoop addi s5, s5, -1 # r-- mv t1, s5 slli t1, t1, 2 add t1, t0, t1 lw t1, 0(t1) j rLoop lLoop: blt s3, t2, SwapLR # if pivot < *(number + l), break lLoop bge s4, s5, SwapLR # if l >= r, break lLoop addi s4, s4, 1 # l++ mv t2, s4 slli t2, t2, 2 add t2, t0, t2 lw t2, 0(t2) j lLoop SwapLR: # swap bge s4, s5, WhileLoop # if l >= r, goto CompareLR mv t0, s0 # t0 = &number[0] mv t1, s5 # t1 = r mv t2, s4 # t2 = l slli t1, t1, 2 # t1 = t1 << 2 slli t2, t2, 2 # t2 = t2 << 2 add t1, t0, t1 # t1 = addr of number[r] = addr of number[0] + r << 2 lw t3, 0(t1) # t3 = *(number + r) add t2, t0, t2 # t2 = addr of number[l] = addr of number[0] + l << 2 lw t0, 0(t2) # t0 = *(number + l) sw t3, 0(t2) # *(number + r) store to addr of *(number + l) sw t0, 0(t1) # *(number + l) store to addr of *(number + r) j WhileLoop EndSortLoop: mv t0, s0 # t0 = &number[0] mv t1, s1 # t1 = lb mv t2, s4 # t2 = l slli t1, t1, 2 # t1 = t1 << 2 slli t2, t2, 2 # t2 = t2 << 2 add t1, t0, t1 # t1 = addr of number[lb] = addr of number[0] + lb << 2 add t2, t0, t2 # addr of number[l] = addr of number[0] + l << 2 lw t3, 0(t2) # t3 = *(number + l) sw t3, 0(t1) # *(number + l) store to (number + lb) sw s3, 0(t2) # s3 = pivot store to (number + l) Recursion1: mv a0, s0 mv a1, s1 addi a2, s4, -1 jal ra, QuickSort Recursion2: mv a0, s0 addi a1, s4, 1 mv a2, s2 jal ra, QuickSort EndQuickSort: lw ra, 0(sp) lw s0, 4(sp) lw s1, 8(sp) lw s2, 12(sp) lw s3, 16(sp) lw s4, 20(sp) lw s5, 24(sp) addi sp, sp, 28 jr ra ############# print array ############### PrintArr: mv t0, a0 # t0 = a0 lw t1, 0(a1) # t1 = *a1 PrintLoop: lw a0, 0(t0) addi a7, x0, 1 # a7 = 1 print_int ecall la a0, space addi a7, x0, 4 # a7 = 4 print_str ecall addi t0, t0, 4 # t0 += 4 addi t1, t1, -1 # t1 -= 1 bne t1, x0, PrintLoop # if t1 != 0 ,go to printLoop #EndPrintArr la a0, nextline addi a7, x0, 4 # a7 = 4 print_str ecall jr ra ``` ## Result Example1: - Input: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] - Output: Using C: ![](https://i.imgur.com/X4LBo5M.png) Using Assembly: ![](https://i.imgur.com/QQSi3Ez.png) Example2: - Input: [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10] - Output: Using C: ![](https://i.imgur.com/clqCKMJ.png) Using Assembly: ![](https://i.imgur.com/AZW746J.png) Example3: - Input: [5, 6, 8, 4, 2, -1, 20, 1531, 5132132, -5, 2147483647, 325, -521] - Output: Using C: ![](https://i.imgur.com/jMPmPed.png) Using Assembly: ![](https://i.imgur.com/4YaK8rx.png) ## Analysis ### Five Stage Pipeline CPU **Ripes** is a 5-stages pipeline CPU ![](https://i.imgur.com/DqNlCAE.png) The following is 5 phase of instruction executed - IF (Instruction Fetch) - PC holds the address of current instruction - PC input the address to **Instr. Memory**, and instruction memory output the current instruction bits - ID (Instruction Decode) - The instruction bits are decoded - Based on operation, the CPU will choose use **the value of Reg1 and Reg2** or **the value of Reg1 and immediate** - EX (Execution) - ALU and Branch operations are performed - MEM(Memory) - Based on instruction, CPU will choose read from/write to memory - WB (Write Back) - Write the result of the instruction to the destination register ### R-Type Instruction Example In this case, I use **add x6, x5, x6** as a example, which is located at 0x000000d4 in my pseudo instruction ```shell c8: 000a0393 addi x7 x20 0 cc: 00231313 slli x6 x6 2 d0: 00239393 slli x7 x7 2 d4: 00628333 add x6 x5 x6 d8: 00032303 lw x6 0 x6 dc: 007283b3 add x7 x5 x7 e0: 0003a383 lw x7 0 x7 ``` - IF Stage(Instruction Fetch) ![](https://i.imgur.com/jwCtfNi.png) - ID Stage(Instruction Decode) ![](https://i.imgur.com/VKeaLjR.png) - EX Stage(Execution) - Because the instruction **slli x6, x6, 2** complete and the **Forwarding**, so the value of x6 become 0x00000030 from 0x0000000c ![](https://i.imgur.com/y6nBLNC.png) - MEM Stage(Memory) ![](https://i.imgur.com/KBLLD6R.png) - WB Stage(Write Back) ![](https://i.imgur.com/yWWH8Dk.png) ## Pipeline Hazard ### Structural Hazard - Problem: Two or more instructions in the pipeline compete for access to a single physical resource - Register File Structural Hazard ![](https://i.imgur.com/MrXC0oD.png) - Solution in RISC-V: Using **Double Pumping** - Double Pumping: split Regfile into two situation (complete in one cycle) 1. Write during 1st half of cycle 2. Read during 2nd half of cycle - Memory Structural Hazard ![](https://i.imgur.com/LxTBMEa.png) - Solution in RISC-V &rarr; Without separate memory units, instruction fetch would have to **stall** for that cycle &rarr; Means all operations in pipeline would have to wait ### Data Hazard - Problem: Instruction depends on result from previous instruction ![](https://i.imgur.com/eZZoLFX.png) - Solution in RISC-V: Forwarding 1. Forwarding result as soon as it available, even through it's not stored in RegFile yet 2. Grab operand from pipeline stage, rather than register 3. Example: ![](https://i.imgur.com/Pz4yAAy.png) - Detect Need for Forwarding - Compare destination of old instruction in pipline with sources of new instruction in decode stage - Example: ![](https://i.imgur.com/7ubqR8X.png) - Forwarding Fail - Forwarding can't solve all cases. For example: > lw t0, 0(t1) > sub t3, t0, t2 ![](https://i.imgur.com/ADCdB28.png) - In these cases, must stall instructions, then forward is done - Example: ![](https://i.imgur.com/wGv8SNB.png) - Conclusion - Most cases of data hazard, uses **Forwarding** to solve it - Some Special cases like **load**, hardware will stall **one cycle** ### Control Hazard - Problem: Because of **branch instruction**, pipeline can't always fetch correct instruction (until the end of execution) - Solution in RISC-V: **Branch Prediction** 1. Guess an outcome instead of waiting directly 2. If the processor guess wrong, the hardware will stall two cycles - Example1: - In this case, I use **beq x20 x21 156 < EndSortLoop >** as a example which is located at 0x000000bc in my pseudo instruction ```clike= b4: 006282b3 add x5 x5 x6 b8: 0002a983 lw x19 0 x5 000000bc <WhileLoop>: bc: 095a0e63 beq x20 x21 156 <EndSortLoop> c0: 00040293 addi x5 x8 0 c4: 000a8313 addi x6 x21 0 ``` - EX Stage(Execute) ![](https://i.imgur.com/BJD2e7Z.png) ![](https://i.imgur.com/5EZTpcJ.png) - MEM Stage(Execue) - The CPU guess the instruction successfully, so the pipeline is continuous ![](https://i.imgur.com/ItTsUYL.png) - Example2: - In this case, I use **bne x6 x0 -36 < PrintLoop >** as a example which is located at 0x000001f0 in my pseudo instruction ```shell 1e4: 00000073 ecall 1e8: 00428293 addi x5 x5 4 1ec: fff30313 addi x6 x6 -1 1f0: fc031ee3 bne x6 x0 -36 <PrintLoop> 1f4: 10000517 auipc x10 0x10000 1f8: e6550513 addi x10 x10 -411 1fc: 00400893 addi x17 x0 4 200: 00000073 ecall ``` - EX Stage(Execute) ![](https://i.imgur.com/P7qU0uB.png) ![](https://i.imgur.com/iEroNA4.png) - MEM Stage(Execue) - The CPU guess the instruction failed, so the pipeline flush, and stall two cycles(NOP) ![](https://i.imgur.com/2IaPx3X.png) ## Appendix: Executed instruction in Ripes ```shell 00000000 <main>: 0: 10000517 auipc x10 0x10000 4: 03850513 addi x10 x10 56 8: 00400893 addi x17 x0 4 c: 00000073 ecall 10: 10000517 auipc x10 0x10000 14: ff450513 addi x10 x10 -12 18: 10000597 auipc x11 0x10000 1c: fe858593 addi x11 x11 -24 20: 1a4000ef jal x1 420 <PrintArr> 24: 10000517 auipc x10 0x10000 28: fe050513 addi x10 x10 -32 2c: 00000593 addi x11 x0 0 30: 10000617 auipc x12 0x10000 34: fd060613 addi x12 x12 -48 38: 00062603 lw x12 0 x12 3c: fff60613 addi x12 x12 -1 40: 030000ef jal x1 48 <QuickSort> 44: 10000517 auipc x10 0x10000 48: 00450513 addi x10 x10 4 4c: 00400893 addi x17 x0 4 50: 00000073 ecall 54: 10000517 auipc x10 0x10000 58: fb050513 addi x10 x10 -80 5c: 10000597 auipc x11 0x10000 60: fa458593 addi x11 x11 -92 64: 160000ef jal x1 352 <PrintArr> 68: 00a00893 addi x17 x0 10 6c: 00000073 ecall 00000070 <QuickSort>: 70: fe410113 addi x2 x2 -28 74: 00112023 sw x1 0 x2 78: 00812223 sw x8 4 x2 7c: 00912423 sw x9 8 x2 80: 01212623 sw x18 12 x2 84: 01312823 sw x19 16 x2 88: 01412a23 sw x20 20 x2 8c: 01512c23 sw x21 24 x2 90: 00050413 addi x8 x10 0 94: 00058493 addi x9 x11 0 98: 00060913 addi x18 x12 0 9c: 00058a13 addi x20 x11 0 a0: 00060a93 addi x21 x12 0 a4: 0f24de63 bge x9 x18 252 <EndQuickSort> a8: 00040293 addi x5 x8 0 ac: 00048313 addi x6 x9 0 b0: 00231313 slli x6 x6 2 b4: 006282b3 add x5 x5 x6 b8: 0002a983 lw x19 0 x5 000000bc <WhileLoop>: bc: 095a0e63 beq x20 x21 156 <EndSortLoop> c0: 00040293 addi x5 x8 0 c4: 000a8313 addi x6 x21 0 c8: 000a0393 addi x7 x20 0 cc: 00231313 slli x6 x6 2 d0: 00239393 slli x7 x7 2 d4: 00628333 add x6 x5 x6 d8: 00032303 lw x6 0 x6 dc: 007283b3 add x7 x5 x7 e0: 0003a383 lw x7 0 x7 000000e4 <rLoop>: e4: 0269d063 bge x19 x6 32 <lLoop> e8: 015a5e63 bge x20 x21 28 <lLoop> ec: fffa8a93 addi x21 x21 -1 f0: 000a8313 addi x6 x21 0 f4: 00231313 slli x6 x6 2 f8: 00628333 add x6 x5 x6 fc: 00032303 lw x6 0 x6 100: fe5ff06f jal x0 -28 <rLoop> 00000104 <lLoop>: 104: 0279c063 blt x19 x7 32 <SwapLR> 108: 015a5e63 bge x20 x21 28 <SwapLR> 10c: 001a0a13 addi x20 x20 1 110: 000a0393 addi x7 x20 0 114: 00239393 slli x7 x7 2 118: 007283b3 add x7 x5 x7 11c: 0003a383 lw x7 0 x7 120: fe5ff06f jal x0 -28 <lLoop> 00000124 <SwapLR>: 124: f95a5ce3 bge x20 x21 -104 <WhileLoop> 128: 00040293 addi x5 x8 0 12c: 000a8313 addi x6 x21 0 130: 000a0393 addi x7 x20 0 134: 00231313 slli x6 x6 2 138: 00239393 slli x7 x7 2 13c: 00628333 add x6 x5 x6 140: 00032e03 lw x28 0 x6 144: 007283b3 add x7 x5 x7 148: 0003a283 lw x5 0 x7 14c: 01c3a023 sw x28 0 x7 150: 00532023 sw x5 0 x6 154: f69ff06f jal x0 -152 <WhileLoop> 00000158 <EndSortLoop>: 158: 00040293 addi x5 x8 0 15c: 00048313 addi x6 x9 0 160: 000a0393 addi x7 x20 0 164: 00231313 slli x6 x6 2 168: 00239393 slli x7 x7 2 16c: 00628333 add x6 x5 x6 170: 007283b3 add x7 x5 x7 174: 0003ae03 lw x28 0 x7 178: 01c32023 sw x28 0 x6 17c: 0133a023 sw x19 0 x7 00000180 <Recursion1>: 180: 00040513 addi x10 x8 0 184: 00048593 addi x11 x9 0 188: fffa0613 addi x12 x20 -1 18c: ee5ff0ef jal x1 -284 <QuickSort> 00000190 <Recursion2>: 190: 00040513 addi x10 x8 0 194: 001a0593 addi x11 x20 1 198: 00090613 addi x12 x18 0 19c: ed5ff0ef jal x1 -300 <QuickSort> 000001a0 <EndQuickSort>: 1a0: 00012083 lw x1 0 x2 1a4: 00412403 lw x8 4 x2 1a8: 00812483 lw x9 8 x2 1ac: 00c12903 lw x18 12 x2 1b0: 01012983 lw x19 16 x2 1b4: 01412a03 lw x20 20 x2 1b8: 01812a83 lw x21 24 x2 1bc: 01c10113 addi x2 x2 28 1c0: 00008067 jalr x0 x1 0 000001c4 <PrintArr>: 1c4: 00050293 addi x5 x10 0 1c8: 0005a303 lw x6 0 x11 000001cc <PrintLoop>: 1cc: 0002a503 lw x10 0 x5 1d0: 00100893 addi x17 x0 1 1d4: 00000073 ecall 1d8: 10000517 auipc x10 0x10000 1dc: e7f50513 addi x10 x10 -385 1e0: 00400893 addi x17 x0 4 1e4: 00000073 ecall 1e8: 00428293 addi x5 x5 4 1ec: fff30313 addi x6 x6 -1 1f0: fc031ee3 bne x6 x0 -36 <PrintLoop> 1f4: 10000517 auipc x10 0x10000 1f8: e6550513 addi x10 x10 -411 1fc: 00400893 addi x17 x0 4 200: 00000073 ecall 204: 00008067 jalr x0 x1 0 ```