{%hackmd @RintarouTW/About %} # Ring Theory The structures similar to the set of integers are called rings, and those similar to the set of real numbers are called fields. ## Ring https://math.stackexchange.com/questions/61497/why-are-rings-called-rings ```! In German, "Ring" can also mean a (close) group of people with shared interests, an association. Maybe it is because of that: you've got some closely interacting elements but for all their interaction, they never leave the group. – Raphael Sep 2 '11 at 23:05 ``` :::info A ring $[R;+,\cdot]$ is a set $R$ together with two binary operations, **addition** and **multiplication**, denoted by the symbols $+$ and $\cdot$ such that the following axioms are satisfied: - $[R; +]$ is an abelian group. $\iff\forall a,b\in R,a+b=b+a$ - $\cdot$ is associative on $R\iff \forall a,b,c\in R, a(bc)=(ab)c$ - $\cdot$ is distributive over $+\iff\forall a,b,c\in R, \cases{ a(b+c)=ab+ac\\ (b+c)a=ba+ca }$ ::: ### The ring of integers (infinite ring) $$ [\mathbb{Z};+,\cdot]\cases{ [\mathbb{Z};+]\in abelian\\ \forall a,b,c\in\mathbb{Z}, a(bc)=(ab)c\iff \cdot\ is\ associative\ on\ \mathbb{Z}.\\ \forall a,b,c\in\mathbb{Z}, a(b+c)=ab+ac } $$ ### The ring of integers modulo $n$ $$ [\mathbb{Z}_n;+_n,\times_n]\cases{ [\mathbb{Z}_n;+_n]\in abelian\\ \forall a,b,c\in \mathbb{Z}_n, a\times_n(b\times_n c)=(a\times_n b)\times_n c\iff\times_n\ is\ associative\ on\ \mathbb{Z}_n\\ \forall a,b,c\in \mathbb{Z}_n,a\times_n(b+_n c)=a\times_n b+_n a\times_n c } $$ ### Commutative Ring :::info A ring in which **multiplication is a commutative operation** is called a commutative ring. Abelian : commutative under $+$ Commutative : commutative under $\cdot$ ::: ### Unity of a Ring :::info A ring $[R;+,\cdot]$ that has a **multiplicative identity** is called **a ring with unity**. The multiplicative identity itself is called **the unity of the ring**. More formally, if there exists an element $1\in R$, such that $\forall x\in R, x\cdot 1 = 1\cdot x = x,$ then $R$ is called a ring with unity. ::: ### Types of Rings :::info $$ \begin{array}{c|c|c} [R;+,\cdot]\in Ring & Communtative\ (a\cdot b=b\cdot a) & Non-Commutative\\\hline without\ unity\ (1\not\in R) & Commutative\ Ring & Ring\\ with\ unity\ (1\in R) & Commutative\ Ring\ with\ unity & Ring\ with\ unity\\ \end{array} $$ ::: ### Direct Products of Rings :::info $$ 1\le i\le n, [R_i;+_i,\cdot_i]\in Ring\\ \cases{ P=\mathop{\vcenter{\huge\times}}_\limits{i=1}^n R_i\\ a=(a_1,a_2,\ldots,a_n)\in P, a_i\in R_i\\ b=(b_1,b_2,\ldots,b_n)\in P, b_i\in R_i\\ }\\ a+b = (a_1+_1 b_1, a_2+_2 b_2,\ldots, a_n+_n b_n)\\ a\cdot b = (a_1\cdot_1 b_1, a_2\cdot_2 b_2,\ldots,a_n\cdot_n b_n) $$ ::: ### Units of Ring :::info Let $[R; +, \cdot]$ be a ring with unity($1$). $$ u\in R, \exists v\in R, u\cdot v=v\cdot u = 1\iff u\ has\ a\ multplicative\ inverse\ v=u^{-1}. $$ A ring element that possesses a multiplicative inverse is **a unit of the ring**. The set of **all units of a ring $R$** is denoted by $$U(R)=\{u\in R\mid \exists u^{-1},u\cdot u^{-1}=u^{-1}\cdot u=1\}$$ ::: Example: In the rings $[R; +, \cdot]$ and $[Q; +, \cdot]$ every nonzero element has a multiplicative inverse. The only elements in $[Z; +, \cdot]$ that have multiplicative inverses are -1 and 1. That is, $U(\mathbb{R}) = \mathbb{R}^∗, U(\mathbb{Q}) = \mathbb{Q}^∗$, and $U(\mathbb{Z}) = \{−1,1\}$. ### Ring Isomorphisms and Subrings :::info Ring Isomorphism $$ [R_1;+_1,\cdot_1],[R_2;+_2,\cdot_2]\in Ring\iff \cases{ \exists f: R_1\to R_2, f\in bijection\\ \forall a,b\in R,f(a+_1 b)=f(a)+_2 f(b)\\ \forall a,b\in R,f(a\cdot_1 b)=f(a)\cdot_2 f(b)\\ } $$ ::: :::info Subring $$ S\ is\ a\ subring\ of\ R\iff \cases{ [R;+,\cdot]\in Ring\\ [S;+]\ is\ a\ subgroup\ of\ [R;+]\\ S\ is\ closed\ under\ \cdot, \forall a,b\in S, a\cdot b\in S } $$ ::: Example: $$ [\mathbb{2Z};+,\cdot]\ is\ a\ subring\ of\ [\mathbb{Z};+,\cdot]\\ \cases{ [\mathbb{2Z};+]\ is\ a\ subgroup\ of [\mathbb{Z};+]\\ \forall a=2m,b=2n\in \mathbb{2Z}, m,n\in\mathbb{Z}, \\ a\cdot b=(2m)\cdot(2n)=2(2mn)\in \mathbb{2Z}\implies \mathbb{2Z}\ is\ closed\ under\ \cdot } $$ ### Basic Properties of Ring :::info Since Ring's multiplicative operation may not have inverse. we can only use distributive to prove. $$ [R;+,\cdot]\in Ring\implies\cases{ \forall a\in R, a\cdot 0=0\cdot a=0\\\hline \because \begin{array}l a\cdot 0 = a\cdot(0+0) &=a\cdot 0+a\cdot 0\\ (a\cdot 0) + -(a\cdot 0) &= (a\cdot 0 + a\cdot 0) + -(a\cdot 0)\\ 0 &= a\cdot 0 \end{array}\\\hline a\cdot (-b)=(-a)\cdot b=-(a\cdot b)\\\hline \because \begin{array}l a\cdot (-b) + a\cdot b &= a\cdot (-b+b)\\ &= a\cdot 0\\ &= 0\\ \therefore -(a\cdot b) = a\cdot (-b) \end{array}\\\hline (-a)\cdot(-b)=a\cdot b\\\hline \because \begin{array}l a\cdot(-b)=-(a\cdot b)\\ (-a)\cdot(-b)+ a\cdot(-b) &= (-a+a)\cdot(-b)\\ &= 0\\ \therefore (-a)\cdot (-b) &= -(-(a\cdot b))\\ &= a\cdot b \end{array} } $$ ::: ### Integral Domains and Zero Divisors :::info Zero Divisor Let $[R; +,\cdot]$ be a ring. $$ \exists a,b\in R, a\ne 0, b\ne 0, a\cdot b=0\iff a,b\ are\ called\ zero\ divisors. $$ ::: :::info Multiplicative Cancellation The multiplicative cancellation laws hold in a ring $[R;+,\cdot]$ if and only if $R$ has **no zero divisors**. ::: :::info Integral Domain ($\mathfrak{D}$) A **commutative** ring **with unity** containing **no zero divisors** is called an integral domain. $$ R\ is\ an\ integral\ domain\iff \cases{ [R;+,\cdot]\in Ring\\ 1\in R\\ \forall a,b\in R,a\cdot b=b\cdot a\\ \not\exists a,b\in R,a\ne 0, b\ne 0, a\cdot b=0\iff \forall a,b\in R,a\cdot b=0\implies a=0\lor b=0 } $$ ::: ### Zero divisors of $\mathbb{Z_n}$ If $m \in \mathbb{Z_n}, m\ne 0$, then $m$ is a **zero divisor** if and only if $m$ and $n$ are **not relatively prime**; i.e., $gcd(m, n) > 1$. This also implies $[\mathbb{Z_p};+_p,\times_p], p\in prime$ has no zero divisors. ### Examples of Integral Domain ($\mathfrak{D}$) :::info $$ \mathfrak{D}\cases{ [\mathbb{Z}; +, \cdot]\\ [\mathbb{Z_p};+_p,\times_p] with\ p\in prime\\ [\mathbb{Q};+,\cdot]\\ [\mathbb{R};+,\cdot]\\ [\mathbb{C};+,\cdot]\\ } $$ ::: The product of two algebraic systems may not be an algebraic system of the same type. ex: $$ [\mathbb{Z_2};+_2,\times_2], [\mathbb{Z_3};+_3,\times_3]\in\mathfrak{D},\\ P=\{(a,b)\mid a\in \mathbb{Z_2}, b\in\mathbb{Z_3}\}\\ but\\ \because (1,0)\cdot(0,2)=(0,0)\\ \therefore P\not\in\mathfrak{D} $$ :::info Boolean Rings $$ U\ is\ a\ nonempety\ set\\ [\mathcal{P}(U);\oplus,\cap]\in commutative\ ring $$ ::: ###### tags: `math`