{%hackmd @RintarouTW/About %} # Proofs and Concepts the fundamentals of abstract mathematics http://people.uleth.ca/~dave.morris/books/proofs+concepts.pdf ## Propositional Logic **DEFINITION:** An **assertion** is a sentence that is either true or false. (Some textbooks use the term **proposition** or **statement** or **sentence**, instead of assertion.) A **deduction** is a series of hypotheses that is followed by a conclusion. (The conclusion and each of the hypotheses must be an assertion.) <img src="https://i.imgur.com/GEE2Jwb.png" style="filter:invert(.9)"></img> **tautology** : always true. ex: $A \lor \lnot A$ **contradiction** : always false ex: $A \& \lnot A$ $A\equiv B$ $A$ is **logically equivalent** to $B$. ### Rule of Negation $$ \lnot \lnot A \equiv A\\ \lnot (A\lor B) \equiv \lnot A \& \lnot B\\ \lnot (A\& B) \equiv \lnot A \lor \lnot B\\ \lnot (A \implies B) \equiv A \& \lnot B\\ \lnot (A \iff B) \equiv A \iff \lnot B $$ ### converse, inverse & contrapositive The converse of $A\implies B$ is $B\implies A$. The inverse of $A\implies B$ is $\lnot A \implies \lnot B$ The contrapositive of $A\implies B$ is the converse of it's inverse = $\lnot B\implies \lnot A$ ### Rules of Propositional Logic <img src="https://i.imgur.com/0A17Npk.png" style="filter:invert(.9)"></img> ## Functions <img src="https://i.imgur.com/wba9hWE.png" style="filter:invert(.9)"></img> $$f: A\to B$$ No one-to-many is allowed in a function. many-to-one is allowed, ex: $f(x) = x^2$, where both $f(\pm 1)=1^2$ ### Ono-to-one $$ \forall a_1,a_2 \in A, (a_1\neq a_2\implies f(a_1)\neq f(a_2))\\ \#(A) = \#(B) $$ many-to-one is not allowed. ### Onto $$ \forall b\in B, \exists a\in A,( f(a)=b)\\ \#(A) \geq \#(B) $$ many-to-one is allowed. ### Bijection one-to-one and onto $$ \forall a_1, a_2 \in A, (a_1\neq a_2\implies f(a_1)\neq f(a_2)\\ \#(A)=\#(B) $$ or $$ \forall b\in B,\exists! a\in A, (f(a)=b) $$ ## Inverse Function $f$ must be one-to-one and onto to get $f^{-1}$ if $f$ is many-to-one, $f^{-1}$ is one-to-many which is not allowed in a function. if $f$ is one-to-one but not onto, $\exists b\in B, f^{-1}(b) \notin A\implies f^{-1} \text{ is not } B\to A$ **DEF:** $$ \begin{cases} f:A\to B\\ f^{-1}:B\to A \end{cases}\\ f^{-1}(f(a)) = a\text{ for all }a\in A\\ f(f^{-1}(b)) = b\text{ for all }b\in B $$ ### Composition of functions <img src="https://i.imgur.com/Sa4F23T.png" style="filter:invert(.9)"></img> $$ \begin{cases} f:A\to B\\ g:B\to C \end{cases}\\ (g\circ f)(a) := g(f(a))\text{ for all } a\in A $$ ex: $$ \begin{cases} f(x) = 3x\\ g(x) = x^2 \end{cases}\\ (g\circ f)(x) = g(3x) = (3x)^2 = 9x^2\\ (f\circ g)(x) = f(x^2) = 3x^2 $$ so $g\circ f \neq f\circ g$, composition is not comuntative. ## Equivalence Relation An **equivalence relation** is a binary relation that's **reflexive**,**symmetric** and **transitive**. for ex: "=" ### Binary Relation $\text{R}$ is a **binary relation** on set A. $\text{R}$ is **reflexive** iff $\forall a \in A, (a \text{ R } a)$ for ex: $\forall a\in A, a=a$ $\text{R}$ is **symmetric** iff $\forall a,b \in A, (a\text{ R } b \implies b\text{ R } a)$ for ex: $\forall a,b\in A, a=b\implies b=a$ $\text{R}$ is **transitive** iff $\forall a,b,c \in A, (a \text{ R } b \text{ } \& \text{ } b \text{ R } c \implies a \text{ R } c)$ for ex: $\forall a,b,c\in A, (a > b) \& (b > c)\implies a>c$ ## Equivalence Class $\sim$ is an equivalence relation on a set A, the equivalence class of "a" is the subset of A, $$[a] = \{x\in A|x\sim a\}$$ for ex: $$ \begin{cases}A = \{1,2,3,4,5\}\\ \sim = \text{\{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5)\}} \end{cases} $$ $\sim$ is a equivalence relation on $A$. ![](https://i.imgur.com/7QPkpX4.png) $\forall a_1, a_2 \in A, (a_1 \sim a_2\implies [a_1] = [a_2])$ [1] = [3] = [4] = {1,3,4} [2] = [5] = {2,5} $\forall a_1, a_2 \in A, (a_1\nsim a_2\implies [a_1] \cap [a_2] = \varnothing)$ 1 $\nsim$ 2 $\implies$ [1] $\cap$ [2] = $\varnothing$ Given $[a_1], [a_2]$ two equivalence classes are not disjoint, such that $[a_1] = [a_2]$. **Proof:** $$ \exists a\in [a_1], a\in [a_2]\implies a\sim a_1, a\sim a_2\\ \therefore [a_1] = [a]=[a_2] $$ ## Modulo Arithmetic $a\sim b\iff [a]=[b]$ ### Integer Modulo Notation : $\bar a = [a]_n$ for convenience. Thus, $$ \mathbb{Z_3} = \{\bar 0, \bar 1, \bar 2\} $$ ![](https://i.imgur.com/O8tEzLI.png) $$ \bar a +_n \bar b=\overline{a+b}\\ \bar a -_n \bar b=\overline{a-b}\\ \bar a \times_n \bar b=\overline{ab} $$ ## Number Theory $\forall a,b,c \in \mathbb{Z}, (a\mid b)\land(b\mid c) \implies a\mid c$ $\forall a,b,n \in \mathbb{Z}, a\equiv b \pmod n\iff n\mid (a-b)$ a is congruent to b modulo n $\iff a \mod n = b \mod n$, both with the same remainer. $$\cases{ a = q_a\times n + r\\ b = q_b\times n + r } \implies a\equiv b\equiv r\pmod n $$ ## Induction $a_1$ is true, assume $a_{n-1}$ is true $\implies a_n$ is true when $n\ge 2$ ### Well Ordered $\mathbb{N}$ is well ordered. $\implies$ Every nonempty set of $\mathbb{N}$ has a smallest element. $\forall p\in \mathbb{N^+},$ p is prime $\iff p > 1,$ and p is not divisible by any element of $\mathbb{N^+}$ other than 1 and p itself. $n\in \mathbb{N}$ and $n>1$ $implies$ $n$ is divisible by a prime number. ### ma+nb = 1 $a\not=b$ and $a, b$ are relatively prime $\iff a, b$ have the only common divisor 1. $$ a, b\text{ are relatively prime} \iff \exists m,n\in\mathbb{Z}, ma+nb = 1 $$ **Proof** $\impliedby )$ Assume $ma+nb=1$ but $a$ and $b$ are not relatively prime. Then $a, b$ have a common divisor $d(> 1 \in \mathbb{Z})$. $\cases{a = q_ad\\b = q_bd} (q_a, q_b \in \mathbb{Z})$ $ma+nb = mq_ad+nq_bd = d(mq_a+nq_b) = 1$ $mq_a + nq_b = \frac{1}{d}$ $\because m,n,q_a, q_b \in \mathbb{Z}\implies mq_a + nq_b \in \mathbb{Z}\implies d=1$ (contradiction to $d > 1$) $\therefore a,b$ must be relatively prime. $$ \forall a,b\in \mathbb{N^+},m,n\in \mathbb{Z}, ma+nb=1\implies a,b \text{ are relatively prime} $$ The contrapositive is also true, $$ \forall a,b\in \mathbb{N^+},m,n\in \mathbb{Z}, a, b\text{ are not relatively prime} \implies ma+nb\not=1 $$ $\implies )$ $a, b \in N^+, m,n \in Z$ $d$ is the gcd of $a,b$ $ma + nb = mq_ad+nq_bd = 1 \implies mq_a+nq_b = \frac{1}{d}$ $d = 1$ is the only way to make $mq_a+nq_b = 1$ $d = 1$ implies $a,b$ must be relatively prime. when $d = 1$, exists $m,n \in \mathbb{Z}$ let $ma+nb =1$ $\implies )$ $$S = \{ma+nb\mid m,n\in\mathbb{Z}\}\cap \mathbb{N^+}$$ Let $d$ be the smallest element in $S$ since $\mathbb{N^+}$ is well-ordered. $\implies d \geq 1$ $d = m_0a+n_0b$ where $m_0, n_0 \in \mathbb{Z}\implies d\in \mathbb{N^+}$ $a, d\in N^+\implies a = qd+r$ $(0\leq r < d, r\in \mathbb{N}, q\in \mathbb{Z})$ $r=a-qd=a-q(m_0a+n_0b)=(1-qm_0)a-n_0b$ $\because d$ is the smallest element in $S$, and $r < d \therefore r\notin S$ ## Function and Relation $$\cases{ A = \{1, 2, 3\}\\ B = \{a, b\} }\\ \Downarrow\\ A\times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\} $$ There are $|A|\times|B|$ elements in $A\times B$. These elements $(x,y)$ are used to be a representation of mapping relations between $A$ and $B$. ### Relation $$ R = \{(x,y)\mid x,y\in A\} $$ Duplicated $(x, y_1), (x, y_2) \in R$ (same $x$, different $y$) are allowed. It's used to describe or define the relations between elements of $A$. ### Function $$ f : A\to B = \{(x,y)\mid x\in A, y\in B\}\\ \forall x \in A, \exists y \in B, f(x) = y $$ There is no duplicated $(x, y_1), (x, y_2)$ since many-to-one is not allowed in function. Also, all $x\in A$(domain) must be mapped to B(codomain). Since each $x \in A$ must be mapped to $B$, and there're $|B|$ possible choices for each $x$. So there're $|B|^{|A|}$ possible mappings which indicate different functions. #### Bijection Bijection on $A\to A$ leads to the possible mappings as Permutaion of $A$($|A|!$). Because bijections is one-to-one and onto, so the many to one cases are not allowed. It means for each $x\in A$(domain), the picked one on the codmain can't be picked again. So it becomes permutaion. ex: $$ A = \{1,2,3\}\\ \pmatrix{1&2&3\\1&2&3}=\{(1,1),(2,2),(3,3)\}\\ \pmatrix{1&2&3\\1&3&2}=\{(1,1),(2,3),(3,2)\}\\ \pmatrix{1&2&3\\2&1&3}=\{(1,2),(2,1),(3,3)\}\\ \pmatrix{1&2&3\\2&3&1}=\{(1,2),(2,3),(3,2)\}\\ \pmatrix{1&2&3\\3&1&2}=\{(1,3),(2,1),(3,2)\}\\ \pmatrix{1&2&3\\3&2&1}=\{(1,3),(2,2),(3,1)\} $$ ## Terms and Notations $a \mid b$ : a is a divisor of b $a \not\mid b$ : a is not a divisor of b (x, y) : ordered pair where (x,y) $\not=$ (y, x) Cartesian product of A and B : $A\times B = \{(a, b)\mid a\in A, b\in B \}$ #(A$\times$B) : cardinality of $\#(A\times B) = \#A\cdot \#B$ {x, y} : set representation without order, {x, y} = {y, x} function : A set $f$ is a function from A to B $\iff$ : a. $\forall (a,b)\in f, (a\in A)\land(b\in B)$ and : b. $\forall a\in A, \exists! b\in B, (a,b)\in f$, ex: $(a,b)$ and $(a,c)$ can't exist at the same time (one-to-many is not allowed) domain and codomain : if $f$ is a function from A to B($f :A\to B$), $A$ is the domain of $f$, $B$ is a codomain of $f$. range = {$f(a)\mid a\in A$} : The range of $f$ is the set that collects all the these elements f(a). binary operation : if $A$ is a set, then any function from $A\times A \to A$ is called binary operation. one-to-one (injective) : $\forall a_1,a_2 \in A, f(a_1) = f(a_2) \implies a_1 = a_2$ : or the contrapositive : $\forall a_1,a_2 \in A, a_1\not=a_2\implies f(a_1)\not=f(a_2)$ onto (surjective) : $\forall b\in B, \exists a\in A, f(a) = b$ bijection : a function that's **one-to-one** and **onto**. : $\forall b\in B,\exists! a\in A, f(a) = b$ identity map : For any set A, define the identity map $I_A: A\to A$ by $\forall a\in A, I_A(a) = a$ inverse function $f^{-1}$ : $\cases{f: A\to B\\g: B\to A}$, $g$ is $f$'s inverse function $\iff \cases{\forall a\in A,g(f(a))=a\\\forall b\in B,f(g(b))=b}$ if $f:A\to B$ has an inverse function $f^{-1}:B\to A$, $f$ is a bijection. composition function : $\cases{f:A\to B\\ g: B\to C}\implies g\circ f: A\to C$ : $(g\circ f)(a) = g(f(a))$, for all $a\in A$ kernel : $f: A\to B, K\subseteq A\times A=\{(x,y)\mid x,y\in A, f(x)=f(y)\}$. The relation $K$ is called the **kernel** of $f$. image : $f:A\to B$ and $A_1 \subset A$, the image of $A_1$ on $f$ is : $f(A_1)=\{f(a)\mid a\in A_1\}$ pre-image or inverse-image : $f:A\to B$ and $B_1\subset B$, the pre-image of $B_1$ under $f$ is : $f^{-1}(B_1)=\{a\in A\mid f(a)\in B_1\}$ cardinality : Sets A and B have the same cardinality $\iff$ there is a bijection from A to B. partition : A partition of a set A is a collection of nonempty subsets of A <img src="https://i.imgur.com/Av6bT3X.png" style="filter:invert(.9)"></img> : $\cases{\bigcup\limits_{i=1}^n Ai = A\\\forall A_i, A_j\in A, (i\not=j)\implies A_i\cup A_j = \varnothing}$ : Suppose $\sim$ is an equivalence relation on A $$\{[a]\mid a\in A\}$$ is a partition of A, also called **A modulo $\sim$**, denoted $A/\sim$ $\bigcup$ : $\bigcup\limits_{i=1}^{n}A_i=A_1\cup A_2\cup\cdots A_n$ $\prod$ : $\prod\limits_{i=1}^{n} x_i= x_1\cdot x_2\cdots x_n$ ###### tags: `abstract` `math`