{%hackmd @RintarouTW/About %} # Poset ## Partial Ordering $$ (L,\preceq) \text{ is called a poset.}\\\implies \preceq \text{is a partial ordering on a set } L \text{ and }\\\cases{ \forall a\in L, a\preceq a\text{ (reflexive)}\\\forall a,b \in L, a\preceq b\text{ and }a\not= b\implies b\npreceq a \text{ (antisymmetric)}\\ \forall a,b,c\in L, a\preceq b\text{ and } b\preceq c \implies a\preceq c \text{ (transitive)}} $$ :::info Under this relation$(L,\preceq)$, we may find $lub(a,b)=a\lor b$ and $glb(a,b)=a\land b$ forl $a,b \in L$ if exist. ::: ## Lower Bound, Upper Bound $(L,\preceq)$ is a poset, $a,b,c,d \in L,$ $c\text{ is the lower bound of }a,b \implies c\preceq a\text{ and } c\preceq b,$ $d$ is an upper bound of $a,b\implies a\preceq d\text{ and }b\preceq d$ ## Greatest Lower Bound (glb) $(L,\preceq)$ is a poset, $a,b,l,l'\in L$, $l$ is the greatest lower bound of $a,b$ $\iff \cases{l\preceq a\\l\preceq b\\\text{if }l'\preceq a\text{ and }l'\preceq b\implies l'\preceq l}$ ## Least Upper Bound (lub) $(L,\preceq)$ is a poset, $a,b,u,u'\in L$, $u$ is the least upper bound of $a,b$ $\iff \cases{a\preceq u\\b\preceq u\\\text{if }a\preceq u'\text{ and }b\preceq u'\implies u\preceq u'}$ :::info GLB and LUB are unique if exist could be proved by antisymmetric $l\preceq l'\text{ and }l'\preceq l\implies l=l'$ ::: ## Greatest Element and Least Element $(L,\preceq)$ is a poset, $M \in L$ is the greatest element $\iff \forall a\in L, a\preceq M$, (denoted by **1**) $m \in L$ is the least element $\iff \forall a\in L, m\preceq a$ (denoted by **0**) ## Examples ### The set of divisors of an integer $n$ ($D_n$) $D_{105}$ = {1, 3, 5, 7, 15, 21, 35} ($D_{105}$,$\mid$) is a poset ```graphviz graph { graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 105--35,21,15; 35--7,5; 15--5,3; 21--7,3; 7--1; 5--1; 3--1; } ``` ### The power set of a set $A$ = {a, b, c} $\mathcal{P}(A)$ = {$\varnothing$, {a}, {b}, {c}, {a,b},{a,c},{b,c},{a,b,c}} ($\mathcal{P}(A),\subseteq$) is a poset ```graphviz graph { graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; "{a,b,c}"--"{a,b}","{a,c}","{b,c}"; "{a,b}"--"{a}","{b}"; "{a,c}"--"{a}","{c}"; "{b,c}"--"{b}","{c}"; "{a}","{b}","{c}"--0; } ``` ###### tags: `math` `poset`