{%hackmd @RintarouTW/About %} # Matrix and Geometry ## Dot Product $$ \pmatrix{a&b}\pmatrix{x\\y}\iff\pmatrix{ax+by}\iff\pmatrix{x&y}\pmatrix{a\\b}\\ \pmatrix{c&d}\pmatrix{x\\y}\iff\pmatrix{cx+dy}\iff\pmatrix{x&y}\pmatrix{c\\d}\\ \Downarrow\\ \pmatrix{a&b\\c&d}\pmatrix{x\\y}=\pmatrix{ax+by\\cx+dy}\\ \Updownarrow\\ \pmatrix{x&y}\pmatrix{a&c\\b&d}=\pmatrix{ax+by&cx+dy}\\ $$ ## Translation $$ \pmatrix{x\\y}+\pmatrix{tx\\ty} = \pmatrix{x+tx\\y+ty} \\\Updownarrow\\ \pmatrix{x&y}+\pmatrix{tx&ty} = \pmatrix{x+tx&y+ty} $$ ## Reflection(Mirror) ### $x$ axis $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{x\\-y}\iff f\pmatrix{x\\y}=\pmatrix{1&0\\0&-1}\pmatrix{x\\y}\\ \Updownarrow\\ \pmatrix{x&y}\overset{f}{\implies}\pmatrix{x&-y}\iff f\pmatrix{x&y}=\pmatrix{x&y}\pmatrix{1&0\\0&-1} $$ ### $y$ axis $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{-x\\y}\iff f\pmatrix{x\\y}=\pmatrix{-1&0\\0&1}\pmatrix{x\\y}\\ \Updownarrow\\ \pmatrix{x&y}\overset{f}{\implies}\pmatrix{-x&y}\iff f\pmatrix{x&y}=\pmatrix{x&y}\pmatrix{-1&0\\0&1} $$ ### $y = x$ $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{y\\x}\iff f\pmatrix{x\\y} = \pmatrix{0&1\\1&0}\pmatrix{x\\y}\\ \Updownarrow\\ \pmatrix{x&y}\overset{f}{\implies}\pmatrix{y&x}\iff f\pmatrix{x&y}=\pmatrix{x&y} \pmatrix{0&1\\1&0} $$ ### $y = -x$ $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{-y\\-x}\iff f\pmatrix{x\\y} = \pmatrix{0&-1\\-1&0}\pmatrix{x\\y}\\ \Updownarrow\\ \pmatrix{x&y}\overset{f}{\implies}\pmatrix{y&x}\iff f\pmatrix{x&y}=\pmatrix{x&y} \pmatrix{0&-1\\-1&0} $$ ## Rotation ### Rotate $90^{\circ}$ $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{y\\x}\overset{g}\implies\pmatrix{-y\\x}\\ \Downarrow\\ rotate90^\circ=g(f\pmatrix{x\\y})\iff g(f\pmatrix{x&y})\\ where\cases{ f=\pmatrix{0&1\\1&0}\\ g=\pmatrix{-1&0\\0&1} }\\ \Downarrow\\ \cases{ rotate90^\circ\pmatrix{x\\y}=g\circ f\pmatrix{x\\y}=\pmatrix{-1&0\\0&1}\pmatrix{0&1\\1&0}\pmatrix{x\\y}=\pmatrix{0&-1\\1&0}\pmatrix{x\\y}\\ rotate90^\circ\pmatrix{x&y}=g\circ f\pmatrix{x&y}=\pmatrix{x&y}\pmatrix{0&1\\1&0}\pmatrix{-1&0\\0&1}=\pmatrix{x&y}\pmatrix{0&1\\-1&0}\\ } $$ ### Rotate $-90^{\circ}$ $$ \pmatrix{x\\y}\overset{f}{\implies}\pmatrix{y\\x}\overset{g}\implies\pmatrix{y\\-x}\\ \Downarrow\\ rotate90=g(f\pmatrix{x\\y})\iff g(f\pmatrix{x&y})\\ where\cases{ f=\pmatrix{0&1\\1&0}\\ g=\pmatrix{1&0\\0&-1} }\\ \Downarrow\\ \cases{ rotate-90^\circ\pmatrix{x\\y}=g\circ f\pmatrix{x\\y}=\pmatrix{1&0\\0&-1}\pmatrix{0&1\\1&0}\pmatrix{x\\y}=\pmatrix{0&1\\-1&0}\pmatrix{x\\y}\\ rotate-90^\circ\pmatrix{x&y}=g\circ f\pmatrix{x&y}=\pmatrix{x&y}\pmatrix{0&1\\1&0}\pmatrix{1&0\\0&-1}=\pmatrix{x&y}\pmatrix{0&-1\\1&0}\\ } $$ ### Rotate$\theta$ $$ \pmatrix{\cos\theta x-\sin\theta y\\\sin\theta x+\cos\theta y}\implies \pmatrix{\cos\theta&-\sin\theta\\\sin\theta&\cos\theta}\pmatrix{x\\y} $$ ###### tags: `math` `geometry`