{%hackmd @RintarouTW/About %} # Lattice ## Join($\vee$) and Meet ($\land$) lub = $a\vee b$ = a join b glb = $a\land b$ = a meet b :::info unique if exist, consider them as binary operations on a set. ::: ### $\vee$ and $\land$ are communative $a\vee b = b\vee a$ $a\land b = b\land a$ :::warning unlike $\preceq$ which is antisymmetric relation(or binary operation) and not communative. ::: ## Lattice A lattice is a [Poset](/@RintarouTW/Poset) ($L$, $\preceq$) $\implies \forall a,b \in L, \exists! (a\land b)\text{ and }\exists!(a\vee b)$, donoted by [$L$;$\vee$,$\land$] It is a lattice under $\preceq$. :::success Lattice is more strict condition than poset, which require all pairs of the elements have lub, glb exist in $L$ ::: ### The power set of a three element set $(\mathcal{P}(A),\subseteq)$ is a poset, and every pair of A had a greatest lower bound and least upper bound. Then $(\mathcal{P}(A),\subseteq)$ is a lattice. ```graphviz digraph {graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->"{a}","{b}","{c}";"{a}"->"{a,b}","{a,c}";"{b}"->"{b,c}","{a,b}";"{c}"->"{a,c}","{b,c}";"{a,b}","{a,c}","{b,c}"->"{a,b,c}"} ``` $\cases{ a\vee b = a\cup b\\ a\land b = a\cap b }\implies [\mathcal{P}(A);\cup,\cap]$ ### Distributive Lattice [$L;,\vee,\wedge$] is a distributive lattice, $\forall a,b,c \in L,\cases{a\wedge(b\vee c)\iff (a\wedge b)\vee(a\wedge c)\\ a\vee(b\wedge c)\iff (a\vee b)\wedge(a\vee c) }$ ### Nondistributive Lattice ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->0,a,b,c;a->a,1;b->b,1;c->c,1;1->1 } ``` $\cases{a\wedge(b\vee c)=a\\ (a\wedge b)\vee(a\wedge c)=0 }$ $\cases{a\vee(b\wedge c)=a\\ (a\vee b)\wedge(a\vee c)=1 }$ #### Diamond Lattice If a lattice contains a sublattice which is isomorphic to the diamond lattice, it's a nondistributive lattice. ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->a,b,c->1; } ``` #### Pantegon Lattice ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->a,b; a->c; b->1; c->1; } ``` $\cases{a\vee(b\wedge c)=a\\ (a\vee b)\wedge(a\vee c)=c }$ The lattice contains pategon lattice is also a nondistributive lattice. ## Bounded Lattice Both the gratest element(**1**) and the least element(**0**) exist. Then it's called a bounded lattice. :::success $$ \forall x\in L\cases{ x\vee 1 = 1\\ x\land 1 = x\\ x\vee 0 = x\\ x\land 0 = 0 } $$ ::: ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [fontcolor="#888800";color="#888800"]; edge [arrowsize=0.5] 0->x [xlabel="lub"]; x->1 [xlabel="lub"]; x->0 [xlabel="glb"]; 1->x [xlabel="glb"]; } ``` ## The Complement(s) of a Lattice Element If [$L;\vee,\land$] is a bounded lattice, if $a\in L$ has a complement $b\in L$, $$ \cases { a\vee b = 1\\ a\land b = 0 } $$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->a,b->1; } ``` $a,b$ are the complments of each other. :::warning A lattice element can have multiple complements. ::: ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->a,b,c->1; } ``` $a,b,c$ are the complments of each others. ## Complemented Lattice Let $\mathcal{L}$ = [$L;\vee,\land$] is a bounded lattice, $\mathcal{L}$ is a complemented lattice if $\forall a\in L$ has a(at least one) complement(s) in $L$. ## Complementation as an opeartion ($a\to \bar{a}$) If a complmented lattice has the property that the complement of every elelment is **unique**, then we consider complmentation to be a unary operation. (denotated by $\bar{a}$) ## One condition for unique complements [$L;\vee,\land$] is a **complemented** and **distributive** lattice, then the complement of each element $a\in L$ is **unique**. Assume $b,c\in L, b\neq c$ are both $a$'s complements, $\implies \cases{ a\vee b = a\vee c = 1\\ a\land b = a\land c = 0 }$ since [$L;\vee,\land$] is a distributive lattice, $\implies a\vee (b\land c) = (a\vee b)\land(a\vee c) = 1\land 1 = 1$ $a\vee (b\land c) = 1\implies b\land c = b\text{ or } b\land c = c\\ \implies b=c$ :::info Since it's a distributive lattice, both diamond and pantegon lattice are not allowed, this impiles when $(b\land c = b)\implies b = c$, or $(b\land c = c) \implies b = c$. ::: This is contradiction to $b\neq c$. So there's a unique complement of each element in $L$. ###### tags: `math` `lattice`