{%hackmd @RintarouTW/About %} # Group Theory ```graphviz digraph { graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [fontcolor="#AAAAAA";fontsize="9";color="#888800"]; "Magama"->"Quasigroup" [xlabel="divisibility"]; "Magama"->"Unital magma" [xlabel="identity"]; "Magama"->"Semigroup"[xlabel="associativity"]; "Quasigroup"->"Loop"[xlabel="identity"]; "Quasigroup"->"Inverse semigroup"[xlabel="associativity"]; "Unital magma"->"Loop"[xlabel="inversibility"]; "Unital magma"->"Monoid"[xlabel="associativity"]; "Semigroup"->"Inverse semigroup"[xlabel="divisibility"]; "Semigroup"->"Monoid"[xlabel="identity"]; "Loop"->Group[xlabel="associativity"]; "Inverse semigroup"->Group[xlabel="identity"]; "Monoid"->Group[xlabel="inversibility"]; } ``` :::info $$ \cases{ Magama: Closed\iff \forall x,y\in Magama,xy\in Magama\\ Semigroup: Associative\iff \forall x,y,z\in Semigroup, x(yz)=(xy)z\\ Monoid: Identity\iff\forall x\in Monoid, \exists! e\in Monoid,xe=ex=x\\ Group: Inversibility\iff\forall x\in Group,\exists! x^{-1}\in Group, xx^{-1}=x^{-1}x=e\\ } $$ ::: - [Group](/@RintarouTW/Algebraic_Structure#Group) - [Subgroup](/@RintarouTW/Algebraic_Structure#Subgroups) - [Generator](/@RintarouTW/Algebraic_Structure#Generator) ## Cyclic Group :::info $$ G\ is\ cyclic\iff\exists a\in G, \langle a\rangle=\{na\mid n\in \mathbb{Z}\}=G $$ ::: ex: $$ \begin{array}l [\mathbb{Z};+]\in cyclic&\iff \mathbb{Z}=\langle 1\rangle=\{n\cdot 1\mid n\in\mathbb{Z}\}\\ &\iff\mathbb{Z}=\{0\}\cup\{\overbrace{1+1+\cdots+1}^{n\ terms}\mid n\in\mathbb{P}\}\cup\{\overbrace{(-1)+(-1)+\cdots+(-1)}^{n\ terms}\mid n\in\mathbb{P}\} \end{array} $$ ### Multipicative group of integers modulo $n$ :::info $$ [\mathbb{U}_n;\times_n]\in cyclic $$ Proof: $$ \cases{ \mathbb{U}_n = \{k\in\mathbb{Z}\mid gcd(n,k)=1, 1\le k\le (n-1)\}\\ |\mathbb{U}_n|=m\\ [\mathbb{U}_n;\times_n]\in Group }\\ \Downarrow\\ \cases{ a\in\mathbb{U}_n, a\ne 1\\ 1\le i,j\le m, i\ne j, a^i\ne a^j \ (need\ better\ proof)\\ \forall x,y\in\mathbb{U}_n, x\times_n y\in\mathbb{U}_n\implies a^1,a^2,\ldots,a^m\in\mathbb{U}_n }\\ \Downarrow\\ \cases{ a^1\ne a^2\ne\cdots\ne a^m\\ a^1,a^2,\ldots,a^m\in\mathbb{U}_n\\ |\mathbb{U}_n|=m }\\ \Downarrow\\ \mathbb{U}_n=\{a^1,a^2,\ldots,a^m\}\iff\mathbb{U}_n=\langle a\rangle\\ \therefore a\ is\ a\ generator\ of\ \mathbb{U}_n\implies [\mathbb{U}_n;\times_n]\in cyclic $$ ::: ### Cyclic Implies Abelian :::info $$ [G;\cdot]\ is\ cyclic\iff G=\langle a\rangle=\{a^n\mid a\in G,n\in\mathbb{Z}\}\\ \forall x,y\in G\cases{ x=a^m, m\in\mathbb{Z}\\ y=a^n, n\in\mathbb{Z} }\\ \begin{array}l x\cdot y&=a^m\cdot a^n\\ &=a^{m+n}\\ &=a^{n+m}\\ &=a^n\cdot a^m\\ &=y\cdot x \end{array}\\ \therefore G\ is\ abelian $$ ::: ### Possible Cyclic Group Structures :::info $$ G\ is\ cyclic\implies G\ is\ isomorphic\ to\cases{ [\mathbb{Z}_n;+_n]\ if\ G\ is\ finite\\ [\mathbb{Z};+]\ if\ G\ is\ infinite\\ } $$ (TODO: proof) ::: ### Subgroups of Cyclic Groups :::info Every subgroup of a cyclic group is cyclic. (TODO: proof) ::: ### The order of elements of a finite cyclic group :::info $$ \cases{ G\in cyclic\\ |G|=n\\ G=\langle a\rangle=\{ka\mid k\in\mathbb{Z}\}\\ S\le G }\implies |S|=n/d, d=gcd(n,k) $$ (TODO: proof) ::: ### Chinese Remainder Theorem (CRT) ## Cosets and Factor Groups :::info Coset of $H$ $$ \cases{ [G;*]\in Group\\ H\le G,a\in G\\ }\\ left\ coset\ a*H=\{a*h\mid h\in H\}\\ right\ coset\ H*a=\{h*a\mid h\in H\} $$ - $H$ is in both the left and right cosets ($e*H=H*e=H$) - $G\in Abelian\implies a*H=H*a\implies$ left-coset = right-coset ::: ### Coset Representative :::info Any element of a coset is called a representative of that coset. ::: :::info Theorem: $$ H\le G, a,b\in G\cases{ b\in a*H\implies b*H=a*H\\ b\in H*a\implies H*b=H*a } $$ Proof: $$ b\in a*H\implies \exists h_1\in H, b=a*h_1\implies a=b*h_1^{-1}\\ \forall x\in a*H, \exists h\in H,x=a*h=b*h_1^{-1}*h\\ \because h_1^{-1},h\in H, h_1^{-1}*h\in H\\ \therefore x=b*(h_1^{-1}*h)\in b*H\implies a*H\subseteq b*H\\ \forall h\in H, b*h=a*h_1*h=a*(h_1*h)\\ \because h_1,h\in H, h_1*h\in H\\ \therefore b*h=a*(h_1*h)\in a*H\implies b*H\subseteq a*H\\ (a*H\subseteq b*H)\land(b*H\subseteq a*h)\implies b*H=a*H $$ ::: ### Cosets Partition a Group :::info - If $[G;∗]$ is a group and $H\le G$, the set of left cosets of $H$ is a partition of $G$. - All of the left cosets of $H$ have the same cardinality. - The same is true for right cosets. Proof: $$ \because\forall a\in G, e\in H, a=a*e\in a*H\\ \therefore \text{all elements of $G$ belongs to a left coset of $H$} $$ ::: ### A Coset Counting Formula :::info $$ |G|\lt\infty\land H\le G\\ \text{the number of distinct cosets of } H=\dfrac{|G|}{|H|}\\ G/H=\text{the set of left cosets of } H\ in\ G $$ ::: ### Distinguished Representatives :::info $4\mathbb{Z}$ is the subgroup of $[\mathbb{Z};+]$ $$ \mathbb{Z}/4\mathbb{Z} = \cases{ \{0+4k\mid k\in\mathbb{Z}\}=4\mathbb{Z}\\ \{1+4k\mid k\in\mathbb{Z}\}=1+\mathbb{Z}\\ \{2+4k\mid k\in\mathbb{Z}\}=2+\mathbb{Z}\\ \{3+4k\mid k\in\mathbb{Z}\}=3+\mathbb{Z}\\ } $$ ::: ### Lagrange’s Theorem :::info The order of a subgroup of a finite group must divide the order of the group. $$ H\le G\implies |H|\ divides\ |G|\\ \Downarrow\\ \mathbb{Z}_p, p\in prime\implies \mathbb{Z}_p\text{ has no proper subgroup.} $$ ::: ### Operation on Cosets :::info Let $C$ and $D$ be left cosets of $H$, a subgroup of $G$ with representatives $c$ and $d$, respectively. Then $$ C\oplus D = (c*H)\oplus (d*H) = (c*d)*H $$ The operation $\oplus$ is called **the operation induced on left cosets by ∗**. When the result we get for $C\oplus D$ is always independent of our choice of representatives, we say that **“$\oplus$ is well defined”**. ::: Example: Cosets of $4\mathbb{Z}\cases{ 0+4\mathbb{Z}=\bar{0}\\ 1+4\mathbb{Z}=\bar{1}\\ 2+4\mathbb{Z}=\bar{2}\\ 3+4\mathbb{Z}=\bar{3}\\ }$ $$ \begin{array}{c|c|c|c} \oplus & \bar{0} & \bar{1} & \bar{2} & \bar{3}\\\hline \bar{0} & \bar{0} & \bar{1} & \bar{2} & \bar{3}\\\hline \bar{1} & \bar{1} & \bar{2} & \bar{3} & \bar{0}\\\hline \bar{2} & \bar{2} & \bar{3} & \bar{0} & \bar{1}\\\hline \bar{3} & \bar{3} & \bar{0} & \bar{1} & \bar{2}\\\hline \end{array} $$ ### Coset operation is well-defined (Abelian Case) :::info $$ G\in Abelian, H\le G, \cases{a,a'\in C, C=a*H\\b, b'\in D, D=b*H}\\ \begin{array}l a'*b'&=(a*h_1)*(b*h_2)\ where\ h1,h2\in H\\ &=a*b*h_1*h_2\ (\because G\in Abelian)\\ &=(a*b)*(h_1*h2)\in (a*b)*H\ (\because h_1,h_2\in H, h_1*h_2\in H) \end{array}\\ \therefore a'*b'\in (a*b)*H\\ a*b,a'*b'\text{ got the same coset independently.}\implies *\text{ is well defined.} $$ ::: ### Well-defined operation implies left cosets a group :::info Let $G$ be a group and $H\le G$. If the operation induced on left cosets of $H$ by the operation of G is **well defined**, then **the set of left cosets forms a group under that operation**. Proof $$ \cases{ [G;*]\in group\\ H\le G\\ L=\text{left cosets of } H }\\ \forall C_1=c_1*H,C_2=c_2*H,C_3=c_3*H\in L,\\ C_1*(C_2*C_3)=c_1*(c_2*c_3)=(c_1*c_2)*c_3=(C_1*C_2)*C_3\implies *\ is\ associative.\\ H=e*H\implies identity\ coset\\ \forall C=a*H, a\in G,\exists a^{-1}\in G, C^{-1}=a^{-1}*H,\\ C*C^{-1}=(a*a^{-1})*H=e*H\implies inverse\ coset $$ ::: ### Quotient/Factor Group :::info Let $G$ be a group and $H\le G$. If the set of left cosets of $H$ forms a group, then that group is called **the factor group of “G modulo H.”** It is denoted **$G/H$**. If $G$ is abelian, then every subgroup of $G$ yields a factor group. Integers modulo $n$ = $\mathbb{Z}/n\mathbb{Z}$ ::: ## Permutation Groups Elements of $S_3$ $$ A=\{1,2,3\}\\ i=\pmatrix{1&2&3\\1&2&3}, r_1=\pmatrix{1&2&3\\2&3&1},r_2=\pmatrix{1&2&3\\3&1&2}\\ f_1=\pmatrix{1&2&3\\1&3&2},f_2=\pmatrix{1&2&3\\3&2&1},f_3=\pmatrix{1&2&3\\2&1&3}\\ \begin{array}{ccccccc} \circ & i & r_1 & r_2 & f_1 & f_2 & f_3\\\hline i & i & r_1 & r_2 & f_1 & f_2 & f_3\\\hline r_1 & r_1 & r_2 & i & f_3 & f_1 & f_2\\\hline r_2 & r_2 & i & r_1 & f_2 & f_3 & f_1\\\hline f_1 & f_1 & f_2 & f_3 & i & r_1 & r_2\\\hline f_2 & f_2 & f_3 & f_1 & r_2 & i & r_1\\\hline f_3 & f_3 & f_1 & f_2 & r_1 & r_2 & i\\\hline \end{array} $$ ### Symmetric Groups :::info Let $A$ be a nonempty set. The set of all permutations on $A$ with the operation of function composition($\circ$) is called **the symmetric group on $A$**, denoted $S_A$. $|A|=n, S_A=S_n, |S_n|=n!$ $n\ge 3, [S_n;\circ]\notin Abelian$ ::: ### Cycle Notation #### Disjoint Cycles :::info We say that two cycles are disjoint if no number appears in both cycles. Disjoint cycles can be written in any order. ::: #### Transposition :::info A transposition is a cycle of length 2. ::: #### Decomposition into Cycles :::info Every cycle of length greater than 2 can be expressed as a product of transpositions. $$ (a_1,a_2,\ldots,a_n)=(a_1,a_n)(a_1,a_{n-1})\cdots(a_1,a_2) $$ ::: ### Parity of Permutation Every permutation on a finite set can be expressed as the product of an **even number of transpositions** or an **odd number of transpositions**, but not both. #### The Alternating Group :::info Let $n\ge 2$. The set of even permutations in $S_n$ is a proper subgroup of $S_n$ called the alternating group on $\{1,2,...,n\}$, denoted $A_n$. ::: ### Dihedral Groups :::info $$ [\mathbb{Z}_2;+_2]\cong[\{-1,1\};\cdot]\cong[S_2;\circ]\\ \begin{array}{c|cc} [\mathbb{Z}_2;+_2] & 0 & 1\\\hline 0 & 0 & 1\\\hline 1 & 1 & 0 \end{array}\cong \begin{array}{c|cc} [\{-1,1\};\cdot] & -1 & 1\\\hline -1 & 1 & -1\\\hline 1 & -1 & 1 \end{array}\cong \begin{array}{c|cc} [S_2;\circ] & i & t\\\hline i & i & t\\\hline t & t & i \end{array} \cases{ i=\pmatrix{1&2\\1&2}\\ t=\pmatrix{1&2\\2&1} } $$ ::: :::info $$ D_4=\langle r_1,f_1\rangle=\{i, r_1, {r_1}^2, {r_1}^3, f_1, r_1\circ f_1, {r_1}^2\circ f_1, {r_1}^3\circ f_1\}\\ \begin{array}{l} i&=\pmatrix{1&2&3&4\\1&2&3&4}& r_1&=\pmatrix{1&2&3&4\\2&3&4&1}& {r_1}^2&=\pmatrix{1&2&3&4\\3&4&1&2}& {r_1}^3&=\pmatrix{1&2&3&4\\4&1&2&3}\\ f_1&=\pmatrix{1&2&3&4\\4&3&2&1}& r_1\circ f_1&=\pmatrix{1&2&3&4\\1&4&3&2}& {r_1}^2\circ f_1&=\pmatrix{1&2&3&4\\2&1&4&3}& {r_1}^3\circ f_1&=\pmatrix{1&2&3&4\\3&2&1&4} \end{array}\\ \cases{ r_1=(1,2,3,4)=(1,4)(1,3)(1,2)\\ f_1=(1,4)(2,3) }\\ odd=\{r_1,{r_1}^3,r_1\circ f_1,{r_1}^3\circ f_1\}\\ even=\{i,{r_1}^2,f_1,{r_1}^2\circ f_1\} $$ ::: :::info Dihedral Groups $$ k\ge 3\cases{ r=(1,2,\ldots,k)\\ f=(1,k)(2,k-1)(3,k-2)\ldots }\\ D_k=\langle r,f\rangle=\{i,r,r^2,\ldots,r^{k-1},f,r\circ f,r^2\circ f,\ldots,r^{k-1}\circ f\}\\ |D_k|=2k $$ ::: ## Normal Subgroups and Group Homomorphisms $$ A_3\le S_3\\ A_3 = \{i, r_1, r_2\}\\ B_3 = \{f_1, f_2, f_3\} \in coset\ of\ A_3\\ S_3 = A_3 + B_3\\ S_3/A_3 = \{A_3, B_3\}\\ \begin{array}{l|ll} \circ & A_3 & B_3\\\hline A_3 & A_3 & B_3\\ B_3 & B_3 & A_3 \end{array} $$ ### Normal Subgroup :::info If $G$ is a group, $H\le G$, then $H$ is a normal subgroup of $G$, denoted $H \lhd G$, if and only if **every left coset of $H$ is a right coset of $H$**. $$ H\lhd G\iff \cases{ H\le G\\ \forall a\in G, a*H=H*a } $$ ::: #### Conditions for a coset operation is well-defined if $H\le G$, then the operation induced on left cosets of $H$ by **the operation of $G$ is well defined** if and only if any one of the following conditions is true. - $H$ is a normal subgroup of $G$ - $h\in H, a\in G, \exists h\in H, h*a=a*h$ - $h\in H, a\in G, a^{-1}*h*a\in H$ If $H\le G$, then the operation induced on left cosets of $H$ by the operation of $G$ is well defined if either of the following two conditions is true. - G is abelian - $|H|= \dfrac{|G|}{2}$ ### Homomorphisms Homomorphisms is NOT required to be **one-to-one (bijection)** like isomorphism. So, the mappting function($\theta$) is possibly **many-to-one**. $$ \theta(x\cdot y)=\theta(x)\diamond \theta(y) $$ :::info $$ \cases{ [G;\cdot],[G';\diamond]\in Group\\ \theta:G\to G'\\ }\\ \theta\ is\ homomporphism\iff \forall x,y\in G, \theta(x\cdot y)=\theta(x)\diamond\theta(y) $$ ::: ### Group Homomorphism Properties :::info If $\theta:G\to G'$ is a homomorphism, then: - $e\in G, e'\in G', \theta(e)=e'$ - $\forall a\in G, \theta(a^{-1})=(\theta(a))^{-1}$ - $H\le G, \theta(H)=\{\theta(h)\mid h\in H\}\le G'$ ::: #### Natural Homomorphism :::info If $H\lhd G$, then the function π : G → G/H defined by π(a) = aH is called **the natural homomorphism**. $$ H\lhd G\implies \pi: G\to G/H, \pi(a)=aH $$ ::: #### Kernel of a homomorphism :::info Let $\theta : G\to G'$ be a homomorphism, and let $e$ and $e'$ be the identities of $G$ and $G'$, respectively. The kernel of $\theta$ is the set $ker\theta = \{a\in G \mid \theta(a) = e'\}$ Let $\theta:G\to G'$ be a homomorphism. The kernel of $\theta(ker\theta)$ is a normal subgroup of $G$. ::: #### Fundamental Theorem of Group Homomorphisms :::info Let θ : G → G′ be a homomorphism. Then θ(G) is isomorphic to G/ ker θ. ::: ## Coding Theory, Group Codes (TODO) ###### tags: `math`