{%hackmd @RintarouTW/About %} # Geometric Language For beginners, it's very ambiguous between coordinate(points) and vector conversion. This is to clearify how it works. $$ \cases{ P := point\\ V := vector\\ O := (0, 0) \in P\\ p := (p_x - 0, p_y - 0) = (p_x, p_y) \in P\\ } $$ ## Vector $$ \begin{array}l \vec{v} := \pmatrix{v_x\\v_y} \in V\\ \vec{u}\pm\vec{v} := \pmatrix{u_x\\u_y}\pm\pmatrix{v_x\\v_y} = \pmatrix{u_x\pm{v_x}\\u_y\pm{v_y}} \in V\\ n\vec{v} := \overbrace{\pmatrix{v_x\\v_y}+\cdots +\pmatrix{v_x\\v_y}}^n = n\pmatrix{v_x\\v_y} = \pmatrix{nv_x\\nv_y} \in V\\ \end{array} $$ :::info $$ \pmatrix{v_x\\v_y} = v_x\pmatrix{1\\0} + v_y\pmatrix{0\\1} = v_x\hat{x}+v_y\hat{y} $$ ::: ## Point (in Coordinate) $$ \begin{array}l O+\vec{p} &:= O + \pmatrix{p_x\\p_y}\\ &= (0 + p_x, 0 + p_y)\\ &= (p_x, p_y) \\ &= p \in P\\ \end{array} $$ :::info $$ \forall p \in P,\\ p = O + \vec{p} = \pmatrix{p_x\\p_y} \iff p-O = \vec{p} = \pmatrix{p_x\\p_y} $$ ::: $$ \begin{array}l p \pm \vec{v} &= O + \vec{p} \pm \vec{v}\\ &= O + \pmatrix{p_x\\p_y} \pm \pmatrix{v_x\\v_y}\\ &= O + \pmatrix{p_x\pm v_x\\p_y\pm v_y}\\ &= (0 + (p_x\pm v_x), 0 + (p_y\pm v_y))\\ &= (p_x\pm v_x, p_y\pm v_y) \in P\\ p_2 - p_1 &= O + \vec{p_2} - (O + \vec{p_1})\\ &= O + \pmatrix{p2_x\\p2_y} - [O + \pmatrix{p1_x\\p1_y}] \\ &= \pmatrix{p2_x\\p2_y} - \pmatrix{p1_x\\p1_y}\\ &= \pmatrix{p2_x-p1_x\\p2_y-p1_y} \in V\\ \end{array} $$ :::warning There is no requirement for $p_1+p_2$. Vector are not limited to 2 dimentional, it could be $n$-dimentional. ::: ###### tags: `math` `geometry`