{%hackmd @RintarouTW/About %} # Field Theory :::info A field is a **commutative ring with unity** such that each **nonzero element has a multiplicative inverse**. ::: The most common infinite fields $$ \cases{ [\mathbb{Q};+,\cdot]\\ [\mathbb{R};+,\cdot]\\ [\mathbb{C};+,\cdot] } $$ - Every field is an **integral domain** $$ F\in Field, \forall a\in F, a\ne 0, \exists a{^-1}\in F, aa^{-1}=a^{-1}=1\\ if\ \exists a,b\in F, a\ne 0, b\ne 0, ab=0\\ a^{-1}ab=a^{-1}0\\ b=0\ (contradiction\ to\ b\ne 0)\\ \therefore F\ has\ no\ zero-divisors\implies F\in \mathfrak{D}(integral domain) $$ - Every **finite integral domain** is a field. ### Galois Field $GF(p^n)$ - Any finite field F has order $p^n$ for a prime $p$ and a positive integer $n$. - For any prime $p$ and any positive integer $n$ there is a field of order $p^n$. - Any two fields of order $p^n$ are isomorphic. ## Polynomial Rings ### Polynomial over a Ring ### Polynomial Addition ### Polynomial Multiplication ### Properties of Polynomial Rings ### Division Property for Polynomials ### The Factor Theorem ### Reducibility over a Field ## Field Extensions ## Power Series ### Power Series Addition ### Power Series Multiplication ### Properties of Power Series ### Polynomial Units ### Power Series Units ###### tags: `math`