--- title: "Complete Boolean Truth Tables" path: "Complete Boolean Truth Tables" --- {%hackmd @RintarouTW/About %} # Complete Boolean Truth Tables Binary Operator Truth Tables | | Expression | Inverse | | --- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | 1 | $1$ | $0$ | | 2 | $A$ | $!A$ | | 3 | $B$ | $!B$ | | 4 | $\left\{\begin{array}{c}A \cdot B,皆通方通/皆是方是\\!(!A + !B),有斷則斷/有否則否\end{array}\right.$ | $\left\{\begin{array}{c}!(A \cdot B),皆通方斷/皆是方否\\!A + !B,有斷則通/有否則是\end{array}\right.$ | | 5 | $\left\{\begin{array}{cc}A + B,皆斷方斷/皆否方否\\!(!A \cdot !B),有通則通/有是則是\end{array}\right.$ | $\left\{\begin{array}{cc}!(A + B),皆斷方通/皆否方是\\!A \cdot !B,有通則斷/有是則否\end{array}\right.$ | | 6 | $\left\{\begin{array}{c}!A \cdot B,01 方通\\!(A + !B),非 01 則斷\end{array}\right.$ | $\left\{\begin{array}{c}!(!A \cdot B),01 方斷\\A + !B,非 01 則通\end{array}\right.$ | | 7 | $\left\{\begin{array}{c}A \cdot !B,10 方通\\!(!A + B),非 10 則斷\end{array}\right.$ | $\left\{\begin{array}{c}!(A \cdot !B),10 方斷\\!A + B,非 10 則通\end{array}\right.$ | | 8 | $\left\{\begin{array}{c}(A \cdot !B) + (!A \cdot B)\\相異則通/相異則是\\![(A + !B) \cdot (!A + B)]\\相同則斷/相同則否\\![(A \cdot B) + (!A \cdot !B)]\\(A + B) \cdot (!A + !B)\end{array}\right.$ | $\left\{\begin{array}{c}![(A \cdot !B) + (!A \cdot B)]\\相異則斷/相異則否\\(A + !B) \cdot (!A + B)\\相同則通/相同則是\\(A \cdot B) + (!A \cdot !B)\\![(A + B) \cdot (!A + !B)]\end{array}\right.$ | 1) 1 , 0 | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 1 | 0 | | 0 | 1 | 1 | 0 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/YLOlfHn.png" style="filter:invert(.9)"/><br> <img src="https://i.imgur.com/H2PJAEx.png" style="filter:invert(.9)"/> 2) OR (皆斷方斷/有通則通),NOR (皆斷方通/有通則斷) | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/VXZl5Lf.png" style="filter:invert(.9)"/><br> <img src="https://i.imgur.com/qIeAbsC.png" style="filter:invert(.9)"/> 3) (A + !B), (!A · B) | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 1 | 0 | | 0 | 1 | 0 | 1 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/acp41Jb.png" style="filter:invert(.9)"/><br> <img src="https://i.imgur.com/4d2ouBG.png" style="filter:invert(.9)"/> 4) A, !A | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 0 | 1 | | 0 | 1 | 0 | 1 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/gQRNgHq.png" style="filter:invert(.9)"/><br> <img src="https://i.imgur.com/M6phkxA.png" style="filter:invert(.9)"/> 5) (!A + B), (A · !B) | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 1 | 0 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/xAVDd5i.png" style="filter:invert(.9)"></img><br> <img src="https://i.imgur.com/KU2MpiJ.png" style="filter:invert(.9)"></img> 6) B , !B | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 0 | 1 | | 0 | 1 | 1 | 0 | | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/TlP2Pp6.png" style="filter:invert(.9)"></img><br> <img src="https://i.imgur.com/PjUTftw.png" style="filter:invert(.9)"></img> 7) XNOR (相異則斷/相同則通), XOR (相異則通/相同則斷) | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 1 | 0 | | 0 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/CcQf1iG.png" style="filter:invert(.9)"></img><br> <img src="https://i.imgur.com/MhYd5GT.png" style="filter:invert(.9)"></img> 8) AND (皆通方通/有斷則斷), NAND (皆通方斷/有斷則通) | $A$ | $B$ | $C$ | $\bar{C}$ | | --- | --- | --- | --------- | | 0 | 0 | 0 | 1 | | 0 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | <img src="https://i.imgur.com/C6HwiEY.png" style="filter:invert(.9)"></img><br> <img src="https://i.imgur.com/yaLPPRI.png" style="filter:invert(.9)"></img> ## Logic Operations 0 + X = X 0 · X = 0 1 + X = 1 1 · X = X X + !X = 1 X · !X = 0 A · B = !(!A + !B) A + B = !(!A · !B) !A + B = !(A · !B) !A · B = !(A + !B) A + !B = !(!A · B) A · !B = !(!A + B) A XOR B = (!A · B) + (A · !B) = (A + B) · (!A + !B) A XNOR B = (A + !B) · (!A + B) = (A · B) + (!A · !B) ## Set <img src="https://i.imgur.com/ShGgpBb.png" style="filter:invert(.9)"></img> ###### tags: `boolean` `math` `logic`