{%hackmd @RintarouTW/About %} # Boolean Algebra A Boolean algebra is a lattice that contains a least element and a greatest element and that is both complemented and distributive. The notation [$B;\lor,\land,\bar{}$] is used to denote the boolean algebra with operations join, meet and complementation. $$ [B;\lor,\land,\bar{}] = \cases{ 0, 1\in B\\ \text{distributive}\\ \text{complemented} } $$ ## Notations $B_2 = \{0,1\}$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->1 } ``` $\cases{ 0\lor 1=1\\ 1\lor 1=1 }\implies 1\text{ is the greatest element of } B_2$ $\cases{ 0\land 0=0\\ 1\land 0=0 }\implies 0\text{ is the least element of } B_2$ $\cases{ 0\lor 1=1\\0\land 1=0 }\implies \bar{0} = 1$ $\cases{ 1\lor 0=1\\1\land 0=0 }\implies \bar{1} = 0$ $B_2^k = \overbrace{B_2\times B_2\times\cdots B_2}^\text{k itmes} = \{(x_1,x_2,\cdots,x_n)\mid x_i\in B_2\}$ ### Boolean Algebra of Sets $A$ be any set, $B=\mathcal{P}(A)$, [$B;\cup,\cap,^c$] is a Boolean algebra. $^c$ = the complement of an element of $B$ with respect to $A$, $A\setminus B$ ex: $\cases{A = \{a,b,c\}\\ B=\{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}}$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->"{a}","{b}","{c}"; "{a}"->"{a,b}","{a,c}"; "{b}"->"{a,b}","{b,c}"; "{c}"->"{a,c}","{b,c}"; "{a,b}","{b,c}","{a,c}"->"{a,b,c}"; } ``` $x\in B$, $x^c = A\setminus x$ Assume $x=\{a,c\}, x^c = \{a,b,c\}\setminus\{a,c\}=\{b\}$ ## Isomorphic Boolean Algebras [$D_6,\lor,\land,\bar{}$] under $\mid$ (divisor) $\cases{\lor:\text{least common multiple}\\ \land:\text{greatest common divisor}}$ $D_6=\{1,2,3,6\}$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 1->2,3->6; } ``` $\cases{A=\{a,b\} , B=\mathcal{P}(A)\\ [B;\cup,\cap,\bar{}]}$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->"{a}","{b}"->"{a,b}"; } ``` $\cases{ A=\{0,1\}\\ B=A\times A=A^2=\{(x,y)\mid x,y\in A\}}$ ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; "(0,0)"->"(0,1)","(1,0)"->"(1,1)"; } ``` ## Always True for Boolean Algebra For any Boolean algebra [$B;\lor,\land,\bar{}$] under $\preceq$ relation, - $\forall x\in B\cases{x\lor 1= 1\\x\land 1=x\\x\lor 0=x\\x\land 0=0}$ :::success Boolean Opeartions $\lor,\land$ becomes least upper bound and greatest lower bound operations which can be easily mapped by the graph. ::: - $a,b\in B\cases{(a\lor b)=a\implies a\succeq b (\iff b\preceq a)\\(a\land b)=a\implies a\preceq b(\iff b\succeq a)}$ - In terms of set operations $a,b\in B\cases{(a\cup b)=a\implies b\subseteq a\\(a\cap b)=a\implies a\subseteq b}$ - In terms of logic $\cases{p\lor q\iff p\text{ if } q\implies p\\p\land q\iff p\text{ if } p\implies q}$ ## Atoms of a Boolean Algebra Every finite Boolean algebra has $2^n$ elements with $n$ generators, called **atoms**. ex: ```graphviz digraph { graph [rankdir=BT]; graph [bgcolor=transparent]; node[fontcolor="#888888";color="#888888"]; edge [color="#888800"]; 0->"{a}","{b}","{c}"; "{a}"->"{a,b}","{a,c}"; "{b}"->"{a,b}","{b,c}"; "{c}"->"{a,c}","{b,c}"; "{a,b}","{b,c}","{a,c}"->"{a,b,c}"; } ``` $\cases{ \{a,b\}=\{a\}\lor\{b\}\\ \{a,c\}=\{a\}\lor\{c\}\\ \{b,c\}=\{b\}\lor\{c\}\\ \{a,b,c\}=\{a\}\lor\{b\}\lor\{c\}}$ $\{a\},\{b\},\{c\}$ are the atoms. $n=3$, it has 3 generators(aka. atoms), $|B| = 2^3 = 8$ (this number is called **order**). :::info $\sum\limits_{k=0}^n\binom{n}{k}=2^n\cases{ C_0^3=1=\varnothing\\ C_1^3=3=\{a\},\{b\},\{c\}\\ C_2^3=3=\{a,b\},\{a,c\},\{b,c\}\\ C_3^3=1=\{a,b,c\} }$ ::: A non-least element $a$ in a Boolean algebra [$B;\lor,\land,\bar{}$] is called an atom if $\forall x\in B \cases{x\land a = a\\ \text{ or}\\ x\land a = 0}$ 1) $x\land a=a$, $x$ is a successor of $a\implies a\preceq x$ 2) $x\land a=0$, so $x$ is not connected to $a$, $\cases{\text{x is another atom}\\ \text{x is a successor of other atoms}\\ x=0}$ ### The Covering Relation [$B;\lor,\land,\bar{}$], $x, y\in B$, :::info $x$ **covers** $y$ $\iff y\prec x$ and $\nexists y'\in B, y\prec y' \prec x$ ::: ex: $\{a,b\}$ covers $\{a\}$ $\{a,b,c\}$ doest NOT cover $\{a\}$ since there exists $\{a,b\}$, $\{a\}\prec\{a,b\}\prec\{a,b,c\}$ :::info Every element(except 0) in a Boolean algebra can be expressed **uniquely** as the join of a subset of all atoms. ::: **Theorem** Let $\mathcal{B}=[B;\lor,\land,\bar{}]$ be any finite Boolean algebra, and let $A$ be the set of all atoms of $B$. Then $[\mathcal{P}(A);\cup,\cap,^c]$ is isomorphic to $[B;\lor,\land,\bar{}]$. Proof: $\cases{ T(\varnothing)=0\\ T(x\cup y)=T(x)\lor T(y)\\ T(x\cap y)=T(x)\land T(y)\\ T(x^c)=\overline{T(x)} }$ T: $\mathcal{P}(A)\to B$ , is a bijection. ###### tags: `math` `boolean` `algebra`