{%hackmd @RintarouTW/About %} # Apollonius's Identity <GeoGeBra material_id="hreu9cqb" content_width="430" content_height="430" scale="0.8"/> <center><iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/hreu9cqb/width/430/height/430/border/ffffff/sfsb/false/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/true/ctl/false" width="300px" height="300px" style="border:0px;filter:invert(.9)"></iframe></center> $$ 已知 \cases{ \overline{AD} = a\\ \overline{BD} = b\\ \overline{AB} = c\\ \overline{PD} = d\\ \overline{BC} = e\\ \overline{CD} = f\\ \overline{AP} = \overline{PB} = \frac{1}{2}c } $$ $$ \begin{array}l a^2+b^2&=(\overline{AC}^2+f^2) + (e^2+f^2)\\ &=((c+e)^2+f^2)+(e^2+f^2)\\ &=c^2+2ce+2e^2+2f^2\\ &=c^2+2(ce+e^2+f^2)\\ d^2&=\overline{PC}^2+f^2\\ &=(\frac{1}{2}c+e)^2+f^2\\ &=\frac{1}{4}c^2+(ce+e^2+f^2)\\ a^2+b^2-2d^2 &=c^2-\frac{1}{2}c^2\\ &=\frac{1}{2}c^2\\ a^2+b^2&=\frac{1}{2}c^2+2d^2 \end{array} $$ ###### tags: `math` `geometry` `apollonius`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up