{%hackmd @RintarouTW/About %} # Algebraic Structure $$ [V;*_1, *_2,\ldots, *_n]\cases{ V : \text{a set called domain of elements}\\ *_n : operations } $$ ## Operations :::info Binary Opeartion $$ S\times S\rightarrow S $$ Unary Operation $$ S\rightarrow S $$ ::: ### Properties of Opeartions :::info Communtative Property : $\forall a,b \in S, a\cdot b=b\cdot a$ Associative Property : $\forall a,b,c\in S, a(bc)=(ab)c$ Identity Property : $\forall a,e\in S, ae=ea=a$ Idempotent Property : $\forall a\in S, a\cdot a=a$ Left Distributive Property : $a\cdot(b+c)\iff \cdot$ is left distributive over $+$ Right Distributive Property : $(b+c)\cdot a\iff \cdot$ is right distributive over $+$ Distributive Property : $a\cdot(b+c) \land (b+c)\cdot a$ Involution Property : $\forall -(-a)=a\iff$ $-$ has the involution property. Closure Property : $\forall a,b\in S, a\cdot b\in S$ ::: ## Monoid :::info $M$ is the set - associative : $\forall a,b,c\in M, a(bc)=(ab)c$ - identity : $\forall a\in M, ae=ea=a$ ::: ## Group :::info $G$ is the set - associative : $\forall a,b,c\in G, a(bc)=(ab)c$ - identity : $\forall a\in G, ae=ea=a$ - inverse : $\forall a\in G, \exists b\in G, ab=ba=e\implies b=\cases{a^{-1}\\-a}$ Abelian Group - communitive : $\forall a,b\in G, ab=ba$ ::: Examples: - $[Z;+]$ is a group - $[Z;\cdot]$ is not a group since inverse(fraction) is not integer. - $[\mathcal{P}(U);\oplus] \cases{\oplus:exclusive\ or\\U\text{ is any set}}$ is a group - $[M_{m\times n}(\mathbb{R});+]$ is a group Rook Matrix ($R_n$) - $n\times n$ matrix - each row and column has exactly one 1. [More about Rook Matrix]() $R_3$ : 3x3 rook matrices $$ \pmatrix{1&0&0\\0&1&0\\0&0&1} \pmatrix{0&1&0\\0&0&1\\1&0&0} \pmatrix{0&0&1\\1&0&0\\0&1&0} \\ \pmatrix{0&0&1\\0&1&0\\1&0&0} \pmatrix{1&0&0\\0&0&1\\0&1&0} \pmatrix{0&1&0\\1&0&0\\0&0&1} $$ ### Properties of Groups #### Identities are Unique :::info Rephrased Identities are unique $\iff$ if $e$ is the identity, no other element of $G$ is an identity of $G$. Proof: $$ G=[G;\cdot]\\ \forall a,e\in G, ae=ea=a\\ assume\ e_2\in G, e_2\neq e, ae_2=e_2a=a,\\ ae=a=ae_2\implies e=e_2\\ \therefore contradiction\ to\ e\neq e_2 $$ ::: #### Inverses are Unique #### Inverse of Inverse :::info $$ \forall a\in G, (a^{-1})^{-1} = a $$ Proof : $$ Assume\ (a^{-1} = b)\land (b^{-1} = c)\land (a\ne c)\\ (ab = e)\land (cb=e)\\ ab = cb\implies a=c\\ \therefore contraditcion. $$ ::: #### Inverse of a Product :::info $$ (ab)^{-1} = b^{-1}a^{-1} $$ ::: #### Cancellation Law :::info $$ \forall a,b,c\in G,\\ left\ cancellation : ab=ac\implies b=c\\ right\ cancellation : ba=ca\implies b=c $$ ::: #### Linear Equations in a Group :::info $$ \forall a,b\in G, ax=b\implies x=a^{-1}b\\ \forall a,b\in G, xa=b\implies x=ba^{-1} $$ ::: #### Exponents :::info $$ \forall a\in G, n\geq 0, a^0 = e,\\ a^n = a^{n-1}a\\ if\ n>0, a^{-n} = (a^n)^{-1}\\ proved\ by\ induction\cases{ a^{n+1}=aa^{n}\\ a^{-n}=(a^{-1})^n, (a^n)^{-1}=(a^{-1})^n\\ a^{n+m}=a^na^m\\ (a^n)^m=a^{nm} } $$ ::: #### $a^m=e, 1\le m\le |G|$ :::info G is a finite group, $|G|=n$ $$ \forall a\in G, \exists m\leq n, a^m = e\\ $$ Proof : $$ list\ \{a, a^2, \ldots, a^{n+1}\}\ has\ n+1\ elements \implies exist\ duplication \because pigeonhole\\ let\ a^p\ and\ a^q\ are\ two\ of\ the\ duplicated\ elements. \implies a^p = a^q, p\neq q\\ let\ m = q-p\implies \begin{array}l a^m &= a^{q-p}\\ &= a^q a^{-p}\\ &= a^q (a^p)^{-1}\\ &= a^q (a^q)^{-1} \because a^p = a^q\\ &= e \end{array} $$ ::: ## Greatest Common Divisors :::info $$ \forall a,b\in \mathbb{Z}, a,b, \text{not both 0},\\ gcd(a,b) = g \iff g\mid a\land g\mid b\\ and\\ (if\ exist\ c\mid a\land c\mid b\implies c\mid g\therefore \text{$g$ is the greatest of all common divisors}) $$ ::: ### Relative Prime (Coprime) :::info $$ a,b\in \mathbb{Z}, gcd(a,b) = 1 \iff a,b\text{ are relatively prime}\\ p\text{ is a prime}\implies \forall a\in \mathbb{Z}, a\neq p, gcd(a,p) = 1 $$ ::: ### Euclidean Algorithm :::info $$ \forall a\in \mathbb{Z}, a\neq 0, gcd(a,0) = a\\ \forall a,b\in \mathbb{Z}, b\neq 0, a=qb+r, gcd(a,b) = gcd(b,r) \mid 0\leq r\leq |b|, q\in \mathbb{Z} $$ ::: ### Modular Arithmetic $$ \mathbb{Z_n} \overset{def}{=} \{0,1,2,\ldots,n-1\} $$ :::info Congruence Modulo $n$ Let $n \in \mathbb{Z}, n\geq 2$, $$a\equiv_n b \iff n\mid (a-b)$$ or $$a\equiv b \pmod{n}$$ Modular Addition $$ a+_n b\iff (a+b) \pmod{n} $$ Modular Multiplication $$ a\times_n b\iff ab \pmod{n} $$ ::: #### Additive Inverse in $\mathbb{Z_n}$ :::info $\forall a\in \mathbb{Z_n}, a\neq 0, (n-a)$ is the additive inverse of $a$. (complement-like) ::: #### The Additive Group of Integers Modulo $n = [\mathbb{Z_n}, +_n]$ - 0 is the identity - $\forall a\in \mathbb{Z}, a+_n 0 = 0+_n a = a$ - $\forall a\in \mathbb{Z},\exists b\in\mathbb{Z_n}, a+_n b = b+_n a = 0\mid b=-a$ #### The Multiplicative Group of Integers Modulo $n = [\mathbb{U_n}, \times_n]$ $$ \mathbb{U_n}=\{k\mid k\in\mathbb{Z},1\leq k\leq n-1,gcd(n,k)=1\} $$ - 1 is the identity - $\forall a\in \mathbb{U_n}, a\times_n 1 = 1\times_n a = a$ - $\forall a\in \mathbb{U_n}, \exists b\in \mathbb{U_n}, a\times_n b=b\times_n a=1$ ## Subsystems :::info $$ [V;\cdot_1,\cdot_2,\ldots,\cdot_n]\land W\subseteq V, [W;\cdot_1,\cdot_2,\ldots,\cdot_n] \iff W\text{ is the subsystem of V}\iff W\leq V $$ ::: ex: - subgroup : $[G;\cdot]$ is a group, $H\subset G$ and $[H;\cdot]$ is still a group, then $H$ is a subgroup of $G$. - submonoid : If $M$ is a monoid and $P$ is a subset of $M$, then $P$ is a submonoid of $M$ if $P$ is a monoid. ### Subgroups :::info $[G;\cdot]\land H\subset G$ - closed in $H\iff \forall a,b\in H, a\cdot b\in H$ - identity $\in H$ - inverse $\in H\iff \forall a\in H, a^{-1}\in H$ implies $H\leq G$ ::: #### Subgroup of a finite group :::info $$ [G;\cdot]\land H\subset G,\\ H\text{ is closed}\iff H\leq G $$ when $H$ is closed, $$ \forall a\in H, a^m = e (m\leq |H|)\\ \therefore \cases{e\in H\\a(a^{m-1})=e\implies a^{-1} = a^{m-1}\in H} $$ so when $H$ is closed in the finite group, it's the sufficient condition for a subgroup. ::: #### Generator :::info $$ \langle a\rangle=\cases{ \{a^n\mid n\in\mathbb{Z}\}\ for\ multiplicative\ operation\\ \{(n)a\mid n\in\mathbb{Z}\} \ for\ additive\ operation } $$ ::: #### Cyclic Subgroup :::info $$ G\in Group,H\leq G,\exists a\in H, \langle a\rangle=H\iff H\text{ is a Cyclic Subgroup}\\ G\in Group,\exists a\in G, \langle a\rangle = G\iff G\text{ is a Cyclic Group}\\ ord(a)=|\langle a\rangle|\iff\text{The Order of }a\\ \langle a\rangle=\langle a^{-1}\rangle $$ $a$ is referred as a generator of the subgroup($H$)/group($G$) ::: ## Direct Products :::info $$ \cases{ [V_i;\cdot_i,\Diamond_i,\ldots]\\ V=V_1\times V_2\times\cdots V_n\\ a=(a_1,a_2,\ldots,a_n)\mid a_i\in V_i, a\in V\\ b=(b_1,b_2,\ldots,b_n)\mid b_i\in V_i, b\in V }\\ a\cdot b=(a_1\cdot_1 b_1, a_2\cdot_2 b_2,\ldots, a_n\cdot_n b_n)\\ a\Diamond b=(a_1\Diamond_1 b_1, a_2\Diamond_2 b_2,\ldots, a_n\Diamond_n b_n)\\ $$ ::: ### The direct product of monoids is a monoid ### The direct product of groups is a group $$ \cases{ [G_1;\cdot_1],[G_2;\cdot_2]\\ V=G_1\times G_2 }\\ $$ ### Associativity of a direct product $$ \forall a=(a_1,a_2),b=(b_1,b_2),c=(c_1,c_2)\in V,\\ \begin{array}l a\cdot (b\cdot c)&=(a_1\cdot_1 (b_1\cdot c_1), a_2\cdot_2 (b_2\cdot_2 c_2))\\ &=(a_1\cdot_1 b_1\cdot_1 c_1, a_2\cdot_2 b_2\cdot_2 c_2)\\ &=((a_1\cdot_1 b_1)\cdot c_1, (a_2\cdot_2 b_2)\cdot_2 c_2)\\ &=(a\cdot b)\cdot c \end{array}\\ $$ ### Identity of a direct product $$ \forall a=(a_1,a_2)\in V,\\ \begin{array}l a\cdot e&=(a_1\cdot_1 e_1,a_2\cdot_2 e_2)\\ &=(a_1,a_2)\\ &=a \end{array}\\ \therefore e=(e_1,e_2) $$ ### Inverse of a direct product $$ \forall a=(a_1,a_2)\in V,\\ \begin{array}l a\cdot a^{-1}&=(a_1\cdot_1 (a_1)^{-1},a_2\cdot_2 (a_2)^{-1})\\ &=(e_1,e_2)\\ &=e \end{array}\\ $$ ## Group Isomorphisms :::info $$ \cases{ [G_1;\cdot_1],[G_2;\cdot_2]\\ \exists f:G_1\rightarrow G_2, f\text{ is a bijection}\\ \forall a,b\in G1,f(a\cdot_1 b)=f(a)\cdot_2 f(b)\\ } \iff G_1\ is\ isomorphic\ to\ G_2 $$ ::: ### Properties of Group Isomorphism :::info $$ \cases{ [G;\cdot_1], [H;\cdot_2]\\ f:G\rightarrow H\\ e\in G, e'\in H }\implies \cases{ f(e)=e'\\ \forall a\in G,f(a)^{-1}=f(a^{-1})\\ K\ is\ a\ subgroup\ of\ G\implies \cases{ f(K)=\{f(a)|a\in K\}\ is\ a\ subgroup\ of\ H\\ f(K)\ is\ isomorphic\ to\ K. } } $$ ::: ###### tags: `math` `algebra`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up