{%hackmd @RintarouTW/About %} # 拉格朗日恆等式 (Lagrange's Identity) $$ \cases{ \vec{u}\cdot\vec{v} = |\vec{u}||\vec{v}|\cos\theta\\ \sin^2\theta = 1-\cos^2\theta }\implies \begin{array}l \sin^2\theta &= 1-(\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|})^2\\ &= \dfrac{|\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2}{|\vec{u}|^2|\vec{v}|^2} \end{array}\\ \therefore (|\vec{u}||\vec{v}|\sin\theta)^2 = |\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2 $$ :::info 拉格朗日恆等式 (1) $$ (|\vec{u}||\vec{v}|\sin\theta)^2 = |\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2 $$ ::: 假設 $$ \cases{ \vec{u} = \pmatrix{u_1\\u_2\\\vdots\\u_n}\\ \vec{v} = \pmatrix{v_1\\v_2\\\vdots\\v_n}\\ }\\ \begin{array}l (|\vec{u}||\vec{v}|\sin\theta)^2 &= |\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2\\ &= (u_1^2+u_2^2+\cdots+u_n^2)(v_1^2+v_2^2+\cdots+v_n^2) - (u_1v_1+u_2v_2+\cdots+u_nv_n)^2 \end{array} $$ $(u_1^2+u_2^2+\cdots+u_n^2)(v_1^2+v_2^2+\cdots+v_n^2) = (\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2)$ 依分配律可做成以下表格 (方陣): $$ \begin{array}{c|c|c|c|c} & v_1^2 & v_2^2 & v_3^2 & \cdots & v_n^2\\ \hline u_1^2 & (u_1v_1)^2 & (u_1v_2)^2 & (u_1v_3)^2 & \cdots & (u_1v_n)^2\\ \hline u_2^2 & (u_2v_1)^2 & (u_2v_2)^2 & (u_2v_3)^2& \cdots & (u_2v_n)^2\\ \hline u_3^2 & (u_3v_1)^2 & (u_3v_2)^2 & (u_3v_3)^2& \cdots & (u_3v_n)^2\\ \hline \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ \hline u_n^2 & (u_nv_1)^2 & (u_nv_2)^2 & (u_nv_3)^2& \cdots & (u_nv_n)^2 \end{array} $$ 對角線上的元素為 $\sum_{i=1}^n (u_iv_i)^2$ 其餘元素被對角線分割成右上方三角形區域與左下方三角形區域, 每一個右上方的元素 $(u_iv_j)^2$ 可以對角線對折後對應到左下方 $(u_jv_i)^2$ 元素,我們可將此二對應的元素寫成一組 $(u_iv_j)^2 + (u_jv_i)^2$ 於是表格中原本有 $n^2$ 個元素,可重新寫成 $$ (\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2) = \sum_{i=1}^n (u_iv_i)^2 + \sum_{i=1}^{n-1}\sum_{j=i+1}^n ((u_iv_j)^2+(u_jv_i)^2) $$ 同理, $(u_1v_1+u_2v_2+\cdots+u_nv_n)^2 = (\sum_{i=1}^n u_iv_i)^2$ 也可做成以下表格 (方陣): $$ \begin{array}{c|c|c|c|c} & u_1v_1 & u_2v_2 & u_3v_3 & \cdots & u_nv_n\\ \hline u_1v_1 & (u_1v_1)^2 & u_1v_2u_2v_1 & u_1v_3u_3v_1 & \cdots & u_1v_nu_nv_1\\ \hline u_2v_2 & u_2v_1u_1v_2 & (u_2v_2)^2 & u_2v_3u_3v_2& \cdots & u_2v_nu_nv_2\\ \hline u_3v_3 & u_3v_1u_1v_3 & u_3v_2u_2v_3 & (u_3v_3)^2& \cdots & u_3v_nu_nv_3\\ \hline \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ \hline u_nv_n & u_nv_1u_1v_n & u_nv_2u_nv_2 & u_nv_3u_3v_n& \cdots & (u_nv_n)^2 \end{array} $$ 對角線上的元素為 $\sum_{i=1}^n (u_iv_i)^2$ 與之前相同的配對方式,我們可把右上三角形中的每個 $u_iv_ju_jv_i$ 元素與左下三角形中所對應的 $u_jv_iu_iv_j$ 元素配成一組 $u_iv_ju_jv_i + u_jv_iu_iv_j = 2u_iv_ju_jv_i$ $$ (\sum_{i=1}^n u_iv_i)^2 = \sum_{i=1}^n (u_iv_i)^2 + \sum_{i=1}^{n-1}\sum_{j=i+1}^n 2u_iv_ju_jv_i $$ 則 $$ \begin{array}l (|\vec{u}||\vec{v}|\sin\theta)^2 &= |\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2\\ &= (u_1^2+u_2^2+\cdots+u_n^2)(v_1^2+v_2^2+\cdots+v_n^2) - (u_1v_1+u_2v_2+\cdots+u_nv_n)^2\\ &= (\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2) - (\sum_{i=1}^n u_iv_i)^2\\ &=\sum_{i=1}^n (u_iv_i)^2 + \sum_{i=1}^{n-1}\sum_{j=i+1}^n ((u_iv_j)^2+(u_jv_i)^2) - \sum_{i=1}^n (u_iv_i)^2 - \sum_{i=1}^{n-1}\sum_{j=i+1}^n 2u_iv_ju_jv_i\\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^n ((u_iv_j)^2-2u_iv_ju_jv_i+(u_jv_i)^2)\\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^n (u_iv_j-u_jv_i)^2 \end{array} $$ 故 :::info 拉格朗日恆等式 (2) $$ \begin{array}l (|\vec{u}||\vec{v}|\sin\theta)^2 &= |\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2\\ &= (\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2) - (\sum_{i=1}^n u_iv_i)^2\\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^n (u_iv_j-u_jv_i)^2 \end{array} $$ ::: ###### tags: `math` `lagrange` `identity`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up