--- title : "幾何代數 (Geometric Algebra) II" path: "幾何代數 Geometric Algebra II" --- {%hackmd @RintarouTW/About %} # 幾何代數 (Geometric Algebra) II <center> <iframe width="560" height="315" src="https://www.youtube.com/embed/dnzUgDl43rQ" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </center> ## Solving Linear Equation $$ \begin{cases} a_1x+b_1y=c_1\\ a_2x+b_2y=c_2 \end{cases}\implies x\pmatrix{a_1\\a_2}+y\pmatrix{b_1\\b_2}=\pmatrix{c_1\\c_2}\\[4ex] x\vec{a}+y\vec{b}=\vec{c}\\[2ex] (x\vec{a}+y\vec{b})\wedge\vec{b}=\vec{c}\wedge\vec{b}\\[2ex] x\vec{a}\wedge\vec{b}=\vec{c}\wedge\vec{b}\\[2ex] \implies x={\vec{c}\wedge\vec{b} \over \vec{a}\wedge\vec{b}}\\[4ex] \vec{a}\wedge(x\vec{a}+y\vec{b})=\vec{a}\wedge\vec{c}\\[2ex] y\vec{a}\wedge\vec{b}=\vec{a}\wedge\vec{c}\\[2ex] \implies y = {\vec{a}\wedge\vec{c} \over \vec{a}\wedge\vec{b}} $$ Example: $$ \begin{cases} x-y=1\\ x+2y=0 \end{cases} \implies \begin{cases} \vec{a}=e_1+e_2\\ \vec{b}=-e_1+2e_2\\ \vec{c}=e_1 \end{cases} \\[4ex] \begin{aligned} \vec{a}\wedge\vec{b} &= (e_1+e_2)\wedge(-e_1+2e_2)\\[2ex] &= 2e_1\wedge e_2 - e_2\wedge e_1\\[2ex] &= 2e_1\wedge e_2 + e_1 \wedge e_2\\[2ex] &= 3(e_1\wedge e_2)\\[2ex] \vec{c}\wedge\vec{b} &= e_1 \wedge (-e_1+2e_2)\\[2ex] &= 2(e_1\wedge e_2)\\[2ex] \implies x &= {2(e_1\wedge e_2) \over 3(e_1\wedge e_2)} = {2 \over 3}\\[2ex] \vec{a}\wedge\vec{c} &= (e_1+e_2)\wedge e_1\\[2ex] &= -e_1 \wedge e_2\\[2ex] \implies y &= {{-e_1 \wedge e_2} \over {3(e_1\wedge e_2)}} = {-1 \over 3}\\ \end{aligned} $$ ## Equation and Determinant ($\det$) - Cramer's Rule $$ \cases{ x=\Large{\vec{c}\wedge \vec{b} \over \vec{a}\wedge \vec{b}}\\ y=\Large{\vec{a}\wedge \vec{c} \over \vec{a}\wedge \vec{b}} } \implies { \pmatrix{a_1 & b_1\\a_2 & b_2}\pmatrix{x\\y}=\pmatrix{c_1\\c_2 } } \implies \cases{ \vec{a}=a_1e_1+a_2e_2\\ \vec{b}=b_1e_1+b_2e_2\\ \vec{c}=c_1e_1+c_2e_2 }\\[4ex] \eqalign{ x &= {(c_1e_1+c_2e_2)\wedge(b_1e_1+b_2e_2) \over (a_1e_1+a_2e_2)\wedge(b_1e_1+b_2e_2)}\\[2ex] &= {{c_1b_2(e_1\wedge e_2)-b_1c_2(e_1\wedge e_2)} \over {a_1b_2(e_1\wedge e_2)-b_1a_2(e_1\wedge e_2)}}\\[2ex] &= {c_1b_2 - b_1c_2 \over a_1b_2 - b_1a_2} = {\det\pmatrix{c_1 & b_1\\c_2 & b_2} \over \det\pmatrix{a_1 & b_1\\a_2 & b_2}}\quad\checkmark\\[2ex] y &= {(a_1e_1+a_2e_2)\wedge(c_1e_1+c_2e_2) \over (a_1e_1+a_2e_2)\wedge(b_1e_1+b_2e_2)}\\[2ex] &= {{a_1c_2(e_1\wedge e_2)-c_1a_2(e_1\wedge e_2)} \over {a_1b_2(e_1\wedge e_2)-b_1a_2(e_1\wedge e_2)}}\\[2ex] &= {a_1c_2 - c_1a_2 \over a_1b_2 - b_1a_2} = {\det\pmatrix{a_1 & c_1\\a_2 & c_2} \over \det\pmatrix{a_1 & b_1\\a_2 & b_2}}\quad\checkmark\\ } $$ ## Two Reflections = Rotation <center> <iframe width="560" height="315" src="https://www.youtube.com/embed/Hy2gbdbrJZ8" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </center> :::info $$ e^{\theta I}u = ue^{-\theta I}\tag{1}\label{eq:eq1} $$ ::: $u' := u$ reflected by $v$ $$ u' = v^{-1} u v $$ $u'' := u'$ reflected by $w$ $$ u'' = w^{-1} v^{-1} u v w $$ $$ \\[2ex] \eqalign{ w^{-1}v^{-1} = (vw)^{-1}\implies u'' &= (vw)^{-1}uvw\\[2ex] vw &= |v||w|\cos \theta + |v||w|\sin \theta I\\[2ex] &= |v||w|e^{\theta I}\\[2ex] \implies (vw)^{-1} &= {e^{-\theta I} \over |v||w|}\\[2ex] \therefore u'' &= {e^{-\theta I} \over |v||w|} u (|v||w|e^{\theta I})\\[2ex] &= e^{-\theta I} u e^{\theta I}\\[2ex] &= ue^{\theta I}e^{\theta I}\eqref{eq:eq1}\\[2ex] &= ue^{2\theta I} } $$ :::success This is why we need to use $\theta \over 2$ to rotate $\theta$ ::: ###### tags: `math` `geometric` `algebra` `geometry` `wedge product`