--- title: "幾何代數 (Geometric Algebra) I" path: "幾何代數 Geometric Algebra I" --- {%hackmd @RintarouTW/About %} # 幾何代數 (Geometric Algebra) I <iframe width="560" height="315" src="https://www.youtube.com/embed/PNlgMPzj-7Q" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen> </iframe> $\require{cancel}$ 又稱外代數 (exterior algebra),合併 Dot Product 與 Wedge Product 形成與四元數類似的應用。 ## Context - $G\ (\mathbb{R^2})$ - $u, v \in G$ - 2 base vectors: $e_1, e_2$ $, where\ e_1\cdot e_2 = 0$ ## Dot product ### Definition $$ \begin{aligned} u\cdot u &= |u|^2\\ u\cdot v &= v\cdot u = |u||v|\cos{\theta}\\ \end{aligned} $$ $$ \begin{cases} u = ae_1 + be_2\\ v = ce_1 + de_2 \end{cases}\\ \begin{aligned} u\cdot v &= ac + bd\\ u\perp v \implies u\cdot v &= 0\\ \end{aligned} $$ ## Wedge Product works for any dimention, better than cross product. - anti-communitive (order matters) - bivectors : $(e_1e_2)$ also be notated as $I$ ### Definition $$ \begin{aligned} u\wedge u &= 0\\ u\wedge v &= - v\wedge u\\ &= |u||v|\sin{\theta}(e_1e_2) \end{aligned} $$ ### Induction $$ \begin{cases} u = ae_1 + be_2\\ v = ce_1 + de_2 \end{cases}\\ \begin{aligned} u\wedge v &= \bcancel{ac(e_1\wedge e_1)} + ad(e_1\wedge e_2)\\ &+ bc(e_2\wedge e_1) + \bcancel{bd(e_2\wedge e_2)}\\ &= ad(e_1\wedge e_2) + bc(e_2\wedge e_1)\\ &= ad(e_1\wedge e_2) - bc(e_1\wedge e_2)\\ &= (ad-bc)(e_1\wedge e_2)\\ \end{aligned} $$ ## Geometric Product ### Definition $$ uv = u\cdot v + u\wedge v $$ $$ \begin{cases} u = ae_1+be_2\\ v = ce_1+de_2 \end{cases}\\ \begin{aligned} uv &= u\cdot v + u\wedge v\\ &= (ac+bd) + (ad-bc)(e_1\wedge e_2) \end{aligned} $$ ### Induction $$ \begin{aligned} uu = u^2 &= u\cdot u + \bcancel{u\wedge u} = |u|^2\\ \therefore \frac{u}{|u|^2}u &=1 \implies u^{-1} = \frac{u}{|u|^2} \end{aligned} $$ :::info $$ \begin{equation} u^{-1} =\frac{u}{|u|^2}\tag{1}\label{eq:eq1} \end{equation} $$ ::: $$ \begin{aligned} u\perp v \implies uv &= \bcancel{u\cdot v} + u\wedge v\\ &= u\wedge v = -v\wedge u = -vu\\[2ex] u\parallel v \implies uv &= u\cdot v + \bcancel{u\wedge v}\\ &= u\cdot v = v\cdot u = vu\\ \end{aligned} $$ :::info $$ \begin{equation} u\perp v \implies uv = u\wedge v = -v\wedge u = -vu\\ u\parallel v \implies uv = u\cdot v = v\cdot u = vu\tag{2}\label{eq:eq2} \end{equation} $$ ::: $$ \begin{aligned} e_1e_1 &= e_1\cdot e_1 + \bcancel{e_1\wedge e_1}\\ &= |e_1|^2\\ &= 1\\ \therefore e_1^2&=1\\ e_2^2&=1\quad (for\ the\ same\ reason.) \end{aligned} $$ :::info $$ \begin{equation} e_1^2 = e_2^2 = 1 \tag{3}\label{eq:eq3} \end{equation} $$ ::: $$ \begin{aligned} e_1e_2 &= \bcancel{e_1\cdot e_2} + e_1\wedge e_2\\ &=e_1\wedge e_2\\ e_2e_1 &=e_2\wedge e_1 = - e_1\wedge e_2 = -e_1e_2\\ &(anti-communitive) \end{aligned} $$ :::info $$ \begin{equation} e_1e_2 = e_1\wedge e_2 = I\\ e_1e_2 = -e_2e_1\tag{4}\label{eq:eq4} \end{equation} $$ ::: $$ \begin{aligned} (e_1e_2)^2 &= e_1e_2e_1e_2\\ &= -e_1e_2e_2e_1\\ &= -e_1e_2^2e_1\\ &= -e_1e_1\\ &= -1\\ \end{aligned} $$ :::info $$ \begin{equation} (e_1e_2)^2 = -1 \tag{5}\label{eq:eq5} \end{equation} $$ ::: ## Results $$ \begin{cases} u^{-1} &=\frac{u}{|u|^2} &\eqref{eq:eq1}\\ u\perp v \implies & uv = u\wedge v = -v\wedge u = -vu &\eqref{eq:eq2}\\ u\parallel v \implies & uv = u\cdot v = v\cdot u = vu\\ e_1^2 = e_2^2 = 1 &&\eqref{eq:eq3}\\ e_1e_2 &= e_1\wedge e_2 = I &\eqref{eq:eq4}\\ e_1e_2 &= -e_2e_1\\ (e_1e_2)^2 &= -1 &\eqref{eq:eq5} \end{cases} $$ $G(\mathbb{R^2})$ - base vectors: $e_1,e_2$ - bivector: $e_1\wedge e_2 = e_1e_2 = I$ (Area with orientation) - scalar: 1 - Dim(G) = 4 formed by $\{\ 1, e_1, e_2, I\ \}$ # Applications ### Rotate $90^\circ = uI$ :::info $uI$ is isomorphic to $ui$. ::: $$ \eqalign{ u &= ae_1+be_2\\ uI &= (ae_1+be_2)I = (ae_1+be_2)e_1e_2\\ &= ae_1e_1e_2+be_2e_1e_2\\ &= ae_2-be_1\\ &= -be_1 + ae_2\\ \therefore uI \implies ui\\[2ex] } $$ :::warning $Iu$ is not the same with $iu$ since order matters. ::: $$ \eqalign{ but,\ Iu &= I(ae_1+be_2) = e_1e_2(ae_1+be_2)\\ &= ae_1e_2e_1 + be_1e_2e_2\\ &= -ae_2e_1e_1 + be_1\\ &= be_1 - ae_2 } $$ This is different from $i$ which is communative. Actually, $$ Iu = -uI = -ui $$ ### Rotate $\theta = ue^{\theta I}$ $$ \begin{aligned} u &= ae_1+be_2\\ u'=ue^{\theta I} &= (ae_1+be_2)(\cos{\theta}+\sin{\theta}I)\\ &=a\cos{\theta}e_1+a\sin{\theta}e_1e_1e_2\\ &+b\cos{\theta}e_2+b\sin{\theta}e_2e_1e_2\\ &=a\cos{\theta}e_1+a\sin{\theta}e_2\\ &+b\cos{\theta}e_2-b\sin{\theta}e_1\\ &=(a\cos{\theta}-b\sin{\theta})e_1+(a\sin{\theta}+b\cos{\theta})e_2 \end{aligned} $$ :::info $ue^{\theta I}$ still works like $e^{\theta i}u$ ::: ## Vector Projection $$ \begin{cases} uv = u\cdot v + u\wedge v\\ vu = v\cdot u + v\wedge u = u\cdot v - u\wedge v \end{cases}\\ uv-vu = 2(u\wedge v) \implies u\wedge v = \frac{uv-vu}{2}\\ uv+vu = 2(u\cdot v) \implies u\cdot v = \frac{uv+vu}{2} $$ :::info $\begin{cases}u\wedge v = \frac{uv-vu}{2}\\ u\cdot v = \frac{uv+vu}{2}\end{cases}$ ::: $$ \begin{aligned} u &= u_\parallel + u_\perp\ ,\ (\ u_\parallel\ is\ parallel\ to\ v,\ u_\perp\ is\ perpendicular\ to\ v\ )\\ uv &= u_\parallel v - v u_\perp\\ &= u_\parallel v - v(u - u_\parallel)\\ &= u_\parallel v - vu + vu_\parallel\\ &= 2u_\parallel v - vu\\ \implies u_\parallel v &= \frac{uv+vu}{2} = u\cdot v \end{aligned} $$ :::info $u_\parallel v = u\cdot v$ ::: $$ \begin{aligned} u_\parallel vv^{-1} &= (u\cdot v)v^{-1}\\ u_\parallel &= (u\cdot v)v^{-1}\\ u_\perp &= u - (u\cdot v)v^{-1}\\ &= (u - (u\cdot v)v^{-1})(vv^{-1})\\ &= (uv - u\cdot v) v^{-1}\\ &= (u\wedge v)v^{-1}\\ \end{aligned} $$ :::info $\begin{cases} u_\parallel &= (u\cdot v)v^{-1}\\ u_\perp &= (u\wedge v)v^{-1} \end{cases}$ ::: $$ \text{Also, since } v^{-1} = \frac{v}{|v|^2} = \frac{v}{v\cdot v}\\ \implies u_\parallel = \frac{u\cdot v}{v\cdot v}v\\ \text {if }|v| = 1\ then\ v^{-1} = v\\ \implies u_\parallel = (u\cdot v)v $$ ### Use Case $$ \begin{cases} u = e_1+e_2\\ v = 2e_1 \end{cases} \implies v^{-1} = \frac{2e_1}{|2^2|} = \frac{e_1}{2}\\ \begin{aligned} u_\parallel &= (u\cdot v)v^{-1}\\ &= 2 \frac{e_1}{2}\\ &= e_1\\ u_\perp &= (u\wedge v)v^{-1}\\ &= ((e_1+e_2)\wedge(2e_1))\frac{e_1}{2}\\ &= (2e_2\wedge e_1)\frac{e_1}{2}\\ &= (2e_2e1) \frac{e_1}{2}\\ &= e_2 \end{aligned} $$ ## Vector Reflection $$ \begin{aligned} u &= u_\parallel + u_\perp\\ u' &= u_\parallel - u_\perp\\ vu' &= vu_\parallel - vu_\perp\\ &= u_\parallel v + u_\perp v\\ &= uv\\ \therefore v^{-1}vu' &= v^{-1}uv\\ u' &= v^{-1}uv\\ \end{aligned} $$ :::info $u' = v^{-1}uv$ ::: ### Use Case $$ \begin{cases} u &= e_1+e_2\\ v &= 2e_1 \end{cases} \implies v^{-1} = \frac{e_1}{2}\\ \begin{aligned} u' &= \frac{e1}{2} (e_1+e_2) 2e_1\\ &= e_1+e_1e_2e_1\\ &= e_1-e_2 \end{aligned} $$ ###### tags: `geometric` `geometry` `wedge` `dot` `algebra`