{%hackmd @RintarouTW/About %} # 平行四邊形在 n 維的面積 - [n 維向量內積 (Dot Product)](/XNUf1M5zQW-hLRDJZC7SWg) - [n 維向量外積 (Cross Product)](/LGyZNOCKTWqf_Dap0yh6uw) 了解如何計算平行四邊形在多維度的計算過程,即可發現其中包括了行列式的規則由來,由此進入 Wedge Product (楔積) 就理所當然了。 ## 2D $$ \cases{ \vec{u}=\pmatrix{u_1\\u_2}\\ \vec{v}=\pmatrix{v_1\\v_2}\\ }\implies |\vec{u}||\vec{v}||\sin\theta|=|u_1v_2-v_1u_2| $$ ### 面積與內積 $$ \cases{ \vec{u_\perp}=\pmatrix{-u_2\\u_1}\\ \vec{v_\perp}=\pmatrix{-v_2\\v_1} }\implies |\vec{u}||\vec{v}||\sin\theta| = |\vec{v}\cdot\vec{u_\perp}| = |\vec{u}\cdot\vec{v_\perp}| $$ ## 3D $$ \cases{ \vec{u}=\pmatrix{u_1\\u_2\\u_3}\\ \vec{v}=\pmatrix{v_1\\v_3\\v_3}\\ }\implies |\vec{u}||\vec{v}||\sin\theta| = ? $$ $$ \cases{ \vec{u}\cdot\vec{v}=|\vec{u}||\vec{v}|\cos\theta\\ \cos^2\theta+\sin^2\theta=1 }\\ \implies\cos\theta=\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}\\ (|\vec{u}||\vec{v}|\sin\theta)^2=|\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2 $$ $$ \begin{array}l (|\vec{u}||\vec{v}|\sin\theta)^2 &=|\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2\\ &=(u_1^2+u_2^2+u_3^2)(v_1^2+v_2^2+v_3^2)-(u_1v_1+u_2v_2+u_3v_3)^2\\ &=(u_1v_2-v_1u_2)^2+(u_2v_3-v_2u_3)^2+(u_3v_1-v_3u_1)^2\\ &=|\vec{u}\times\vec{v}|^2 \end{array}\\ |\vec{u}||\vec{v}||\sin\theta|=\sqrt{(|\vec{u}||\vec{v}|\sin\theta)^2}=\sqrt{|\vec{u}\times\vec{v}|^2}=|\vec{u}\times\vec{v}| $$ ## n-D $$ \cases{ \vec{u}=\pmatrix{u_1\\u_2\\u_3\\\vdots\\u_n}\\ \vec{v}=\pmatrix{v_1\\v_3\\v_3\\\vdots\\v_n}\\ }\implies |\vec{u}||\vec{v}||\sin\theta|=? $$ $$ \cases{ \vec{u}\cdot\vec{v}=|\vec{u}||\vec{v}|\cos\theta\\ \cos^2\theta+\sin^2\theta=1 }\\ \implies\cos\theta=\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}\\ (|\vec{u}||\vec{v}|\sin\theta)^2=|\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2 $$ :::info [拉格朗日恆等式 (Lagrange's Identity)](/u9RoqmLDQX2FMcFKmRizLg) $$ (\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2)-(\sum_{i=1}^n u_iv_i)^2=\sum_{i=1}^{n-1}\sum_{j=i+1}^n (u_iv_j-v_iu_j)^2 $$ ::: $$ \begin{array}l (|\vec{u}||\vec{v}|\sin\theta)^2 &=|\vec{u}|^2|\vec{v}|^2-(\vec{u}\cdot\vec{v})^2\\ &=(u_1^2+u_2^2+\cdots+u_n^2)(v_1^2+v_2^2+\cdots+v_n^2)-(u_1v_1+u_2v_2+\cdots+u_nv_n)^2\\ &=(\sum_{i=1}^n u_i^2)(\sum_{i=1}^n v_i^2)-(\sum_{i=1}^n u_iv_i)^2\\ &=\sum_{i=1}^{n-1}\sum_{j=i+1}^n (u_iv_j-v_iu_j)^2\\ &=|\vec{u}\times\vec{v}|^2 \end{array}\\ \therefore|\vec{u}||\vec{v}||\sin\theta|=\sqrt{(|\vec{u}||\vec{v}|\sin\theta)^2}=\sqrt{|\vec{u}\times\vec{v}|^2}=|\vec{u}\times\vec{v}| $$ ###### tags: `math` `lagrange` `parallelogram`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up