{%hackmd @RintarouTW/About %} # 和差角幾何解 <GeoGeBra material_id="q8mffjnv" content_width="430" content_height="430" scale="0.8"/> <iframe src="https://rintaroutw.github.io/fsg/test/Trigonometric-identities.svg" width="768" height="600"></iframe> $$ 已知 \overline{AB}=\overline{AC}=\overline{AD} $$ ## 和角 $$ 令\cases{ \angle{\alpha}=\angle{BAC}=\angle{EDH}\\ \angle{\beta}=\angle{CAD} } \implies\cases{ \sin\beta=\frac{\overline{ED}}{\overline{AD}}\\ \cos\beta=\frac{\overline{AE}}{\overline{AD}}\\ } $$ $$\begin{array}l \sin{(\alpha+\beta)} &= \frac{\overline{HD}}{\overline{AD}}\\ &=\frac{\overline{HG}}{\overline{AD}}+\frac{\overline{GD}}{\overline{AD}}\\ &又 \cases{ \overline{HG} = \overline{FE} =\overline{AE}\sin\alpha\\ \overline{GD} = \overline{ED}\cos\alpha }\\ &=\frac{\overline{AE}}{\overline{AD}}\sin\alpha + \frac{\overline{ED}}{\overline{AD}}\cos\alpha\\ &=\sin\alpha\cos\beta + \cos\alpha\sin\beta \end{array} $$ $$ \begin{array}l \cos{(\alpha+\beta)} &= \frac{\overline{AH}}{\overline{AD}}\\ &= \frac{\overline{AF}}{\overline{AD}}-\frac{\overline{HF}}{\overline{AD}}\\ &又 \cases{ \overline{HF} = \overline{GE} = \overline{ED}\sin\alpha\\ \overline{AF} = \overline{AE}\cos\alpha\\ }\\ &=\frac{\overline{AE}}{\overline{AD}}\cos\alpha - \frac{\overline{ED}}{\overline{AD}}\sin\alpha\\ &=\cos\alpha\cos\beta - \sin\alpha\sin\beta \end{array} $$ ## 差角 $$ 令\cases{ \angle{\alpha}=\angle{BAD}=\angle{HAD}\\ \angle{\beta}=\angle{BAC}=\angle{EDH} } \implies\cases{ \sin\alpha=\frac{\overline{HD}}{\overline{AD}}\\ \cos\alpha=\frac{\overline{AH}}{\overline{AD}}\\ } $$ $$ \begin{array}l \sin{(\alpha-\beta)} &= \frac{\overline{ED}}{\overline{AD}}\\ &= \frac{\overline{KD}}{\overline{AD}}-\frac{\overline{KE}}{\overline{AD}}\\ &又\cases{ \overline{KD}=\overline{HD}\cos\beta\\ \overline{KE}=\overline{HM}=\overline{AH}\sin\beta }\\ &=\frac{\overline{HD}}{{\overline{AD}}}\cos\beta-\frac{\overline{AH}}{\overline{AD}}\sin\beta\\ &=\sin\alpha\cos\beta-\cos\alpha\sin\beta \end{array} $$ $$ \begin{array}l \cos{(\alpha-\beta)} &=\frac{\overline{AE}}{\overline{AD}}\\ &=\frac{\overline{AM}}{\overline{AD}}+\frac{\overline{ME}}{\overline{AD}}\\ &又\cases{ \overline{AM}=\overline{AH}\cos\beta\\ \overline{ME}=\overline{HK}=\overline{HD}\sin\beta }\\ &=\frac{\overline{AH}}{\overline{AD}}\cos\beta+\frac{\overline{HD}}{\overline{AD}}\sin\beta\\ &=\cos\alpha\cos\beta+\sin\alpha\sin\beta \end{array} $$ ###### tags: `math` `geometry`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up