{%hackmd @RintarouTW/About %} # 內積的幾何證明 <center><iframe scrolling="no" title="" src="https://www.geogebra.org/material/iframe/id/ebpc256r/width/800/height/500/border/888888/sfsb/false/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/true/ctl/false" width="600px" height="377px" style="border:0px;filter:invert(.9)"></iframe></center><br> $$ 令\cases{ \vec{u} = \vec{AB} = (u_x, u_y)\\ \vec{v} = \vec{AC} = (v_x, v_y) } $$ $$ \cases{ |u_x| = |AI| = |AJ|\\ |u_y| = |IB| = |JD|\\ |v_x| = |AF|\\ |v_y| = |FC| } $$ $$ \begin{array}l \vec{u}\cdot\vec{v} &= |AB| \times (|AC|\times\cos(\angle CAH))\\ &= |AB| \times |AH| \\ &= |AD| \times |AH| \\ &=\text{ Area of } AGLD \\ &=\text{ Area of } AGKJ \\ &= AFMJ + FGKM \\ &= |AJ| \times |AF| + |AJ| \times |FG| \\ &= |u_x| \times |v_x| + |AJ| \times |FG| \end{array} $$ $$ \begin{array}l \because \triangle GFC \approx \triangle LKG\\ |LK|:|KG| = |GF|:|FC|\\ |KG|\times |GF| = |LK| \times |FC|\\ |AJ| \times |GF| = |JD| \times |FC|\\ |AJ| \times |GF| = |u_y| \times |v_y| \end{array} $$ $$ \begin{array}l \therefore \vec{u}\cdot\vec{v} &= |u_x| \times |v_x| + |AJ| \times |FG|\\ &= |u_x| \times |v_x| + |u_y| \times |v_y| \end{array} $$ ###### tags: `geometry` `math`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up