Try   HackMD

國內Edge AI/TinyML整合開發環境 社群版本發展提案

提案之原始檔案:社群版本發展提案.docx

  1. 起始於社群發展,當社群版本發展到一定程度後再與國內廠商進行合作。社群可以決定先支援那些微控制器或開發板。
  2. 方向上還是以『兼容』Edge Impulse為目標,也就是以TensorFlow Lite與TensorFlow Lite for Microcontrollers為深度學習框架。
  3. 會以本地(Local)為主,仿「Edge Impulse Studio」以Python程式語言開發本地端的整合開發環境:
    Image Not Showing Possible Reasons
    • The image was uploaded to a note which you don't have access to
    • The note which the image was originally uploaded to has been deleted
    Learn More →
  4. 開發本地端的整合開發環境有以下幾個理由:
    • 國內PC市場發達,要取得一定算力的桌機或筆電都不會太困難。
    • 雲端(Cloud)運算還是要費用的,若在社群發展這筆錢除非有人贊助。其實看Edge Impulse的發展也知道,讓社群免費使用後在雲端運算費用就會燒不少錢;以致於之後不得不做控管:
      Image Not Showing Possible Reasons
      • The image was uploaded to a note which you don't have access to
      • The note which the image was originally uploaded to has been deleted
      Learn More →
    • 在雲端上看起來很理想,但最後還是要與本地端做連接;這時Edge Impulse會用到命令列介面(CLI),這有幾個問題:
      1. 親和力低,且與雲端圖形界面搭配起來很突兀。
      2. 這個命令列介面是用Node.js(JavaScript程式語言)開發的,因此還需要安裝一個相對應的環境。
    • 但最後一個是商業原因,如果單純銷售軟體在國內應該很難營利;可參考立達軟體商業模式以軟硬體搭配進行銷售。
  5. 整合開發環境構想示意圖
    Image Not Showing Possible Reasons
    • The image was uploaded to a note which you don't have access to
    • The note which the image was originally uploaded to has been deleted
    Learn More →
    • 初期就以本地端發展(使用Python、C與C++程式語言)設計開發環境,後續若有需要使用雲端運算時再做擴展。
    • 開發主機可以是電競筆電或電競主機(包含Nvidia GPU),或是Jetson Nano套件(含有CUDA單元,但較適合TinyML應用之模型訓練)。其上運作的是Windows或Linux作業系統。