# Fast AI API Note ## Status Message ### Image List Raw ```json= "unlabeled": "未標註" "success": "標註完成" ``` --- ### Time Series Raw ```json= "warning": "警告(資料出現異常)" "in progress": "處理中" "success": "成功" ``` --- ### Image、Time Series Split ``` json= "in progress": "處理中" "success": "成功" "failure": "失敗" ``` --- ### Time Series Feature Generate ```json= "in progress": "處理中" "terminated": "中止" "success": "成功" "failure": "失敗" ``` --- ### Image、Time Series Auto ML ```json= "training": "處理中" "terminated": "中止" "success": "成功" "failure": "失敗" ``` --- ## Hyperparameters Set ### Time Series Gen Feature #### Frontend to Backend ``` json= { "filename": "split filename", "frequency": "second", // year, month, day, hour, minute, second "name": "feature filename", "description": "description", "method":[ //允許空陣列 "Complexity", "CycleIndicators", "LogicalCondition", "MathFunction", "MomentumIndicators", "StatisticFeatures", "StatisticModels" ] } ``` #### Backend to Ai Pipeline ```json= // after refactory (NEW) hyperparameter = { "COLUMN_ID": preprocess_info.col_id, "COLUMN_TIME": preprocess_info.col_time, "COLUMN_TARGET": preprocess_info.col_target, "COLUMN_TARGET_Y": preprocess_info.col_target_y, "PERIODS": preprocess_info.period, "FREQUENCY": "sec", // "sec", "min", "hour", "day", "month", "year" 資料頻率單位 "TAT_USE_CATEGORY": method } // before refactory (OLD) hyperparameter = { "COLUMN_ID": raw["column_id"], // 變動 "COLUMN_TIME": raw["column_time"], // 變動 "COLUMN_TARGET": preprocess["column_y"], // 變動 "COLUMN_TARGET_Y": "column_target_y", // 固定 "PERIOD_LIST": preprocess["period"], // 變動 "FG_WINDOW_SIZE_LIST": int(window_size), "RK_FEATURES": 840, // 固定,產生的feature數量 Demo: 84、建議: 840 UP "RK_USED_MODULE": "mini", // 固定,套件使用的特徵演算法 "TAT_USE_CATEGORY": method, // 變動 "FN_METHOD": "minmax" // 變動,資料標準化 } ``` ### Time Series Auto ML #### Frontend to Backend ``` json= { "name": "model_name", "filename": "(filename)", // 此頁選擇的feature file id "hyperparameter": { "MODE": "Demo", // Demo, Quick, Normal, Long "METRIC": "mae", // smape, accuracy "TASK_TYPE": "", // classification, regression "ALGORITHM": ["AutoML", "AutoDL"], "DR_METHODS": ["pca", "high_correlation", "tsne"] } } ``` #### Backend to Pipeline ```json= // after refactory hyperparameters = { "COLUMN_ID": preprocess.col_catrgory, "COLUMN_TIME": preprocess.col_time, "COLUMN_TARGET": preprocess.col_target, "COLUMN_TARGET_Y": "column_target_y", // if y_case == predict: = y_parameter["predict"] "TRAINING_CONFIG": { "MODE": "Demo", // Demo, Quick, Normal, Long (單選) "METRIC": "SAMPE", // MAE, MSE, SMAPE, ACCURACY (單選) "TASK": "regression", // classification, regression (單選) "ALGORITHM": ["AutoML", "AutoDL"], //(複選) "PERIODS": preprocess.y_parameter["period"], // if y_case == predict: = None "DR_METHODS": ["pca", "high_correlation", "tsne"], // 複選 } } // before refactory hyperparameters = { "REPORT_PATH": "model", "COLUMN_ID": hyperparameter["COLUMN_ID"], "COLUMN_TIME": hyperparameter["COLUMN_TIME"], "COLUMN_TARGET": hyperparameter["COLUMN_TARGET"], "COLUMN_TARGET_Y": "column_target_y", "PERIOD_LIST": period, "AUTO_MODEL_CONFIG": { "MODE": hyperparameter["AUTO_MODEL_CONFIG"]["MODE"], "TRAIN_CLUSTER_METHOD": "AUTO", "DROP_ORIGINAL_FEATURE": True, "RETRAIN_SIZE": hyperparameter["AUTO_MODEL_CONFIG"]["RETRAIN_SIZE"], "AI_PIP_MAX_TRAIN_SIZE": 500, "AI_PIP_TRAIN_SCORING": hyperparameter["AUTO_MODEL_CONFIG"]["AI_PIP_TRAIN_SCORING"], "AI_PIP_TUNED_PARAMETERS": { "Auto_keras_tsf": { "tuner": "greedy", "max_trials": 10, "epochs": 1000 }, "Auto_sk_tsf": { "time_left_for_this_task": 7200, "per_run_time_limit": 1800, "ensemble_size": 25, "ensemble_nbest": 25, "n_jobs": 1, "resampling_strategy": "holdout", "resampling_strategy_arguments": { "train_size": 0.9 }, "delete_tmp_folder_after_terminate": False, "dask_port": 30679 } }, "AI_PIP_ESTIMATOR_LIST": hyperparameter["AUTO_MODEL_CONFIG"]["AI_PIP_ESTIMATOR_LIST"], "DR_METHOD": hyperparameter["AUTO_MODEL_CONFIG"]["DR_METHOD"], "LOW_PREDICTABLE_PARAMETERS": { "method": "Croston_tsf", "scoring": "mae", "value_parameters": [ ["naive", None], ["ma", 2], ["ma", 3], ["ma", "all"], ["ema", 1], ["ema", 3] ], "demand_interval_parameters": [ ["naive", None], ["ma", 2], ["ma", 3], ["adi", None], ["ma", "all"], ["ema", 1], ["ema", 3] ] } } } ``` ### Image Auto ML #### Frontend to Backened ```json= { "name": "model_name", "filename": "(filename)", // 此頁選擇的split file id "hyperparameter": {} // 此頁沒有其他參數需要設定所以帶空物件 } ``` #### Backend to Ai Pipeline ```json= hyperparameters = { "max_trails": 3 "epochs": 10, "batch_size": 32, "image_size": 224} ``` ## Role Set ### Super Admin ```python= POST >>> "/account/logout" POST >>> "/account/refresh" POST >>> "/account/userinfo" GET >>> "/companys" # 取得公司列表 POST >>> "/companys" # 新增公司列表 PUT >>> "/companys/{company_id}" # 編輯公司列表 PUT >>> "/companys/{company_id}" # 編輯公司狀態 GET >>> "/companys/users" # 取得各公司底下員工列表 (Read Only) GET >>> "/companys/projects" # 取得各公司底下專案列表 (Read Only) ``` --- ### Company Admin ```python= POST >>> "/account/logout" POST >>> "/account/refresh" POST >>> "/account/userinfo" GET >>> "/companys/{company_id}/projects" # 取得所屬公司底下專案列表 POST >>> "/companys/{company_id}/projects" # 新增所屬公司底下專案列表 PUT >>> "/companys/{company_id}/projects/{project_id}" # 編輯所屬公司底下專案列表 / 編輯所屬公司底下專案的成員 PUT >>> "/companys/{company_id}/projects/{project_id}/status" # 編輯所屬公司底下專案狀態 GET >>> "/companys/{company_id}/users" # 取得所屬公司底下員工列表 POST >>> "/companys/{company_id}/users" # 新增所屬公司底下員工列表 PUT >>> "/companys/{company_id}/users/{user_id}/status" # 編輯所屬公司底下員工狀態 GET >>> "/companys/{company_id}/projects/{project_id}/users" # 取得所屬公司底下專案的成員狀態 POST >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}" # 新增特定專案的成員列表 DELETE >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}"# 移除特定專案的成員列表 ``` ### Porject Admin ```python= POST >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}" # 新增特定專案的成員列表 DELETE >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}"# 移除特定專案的成員列表 # Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload" PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript" GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}" # Image Split Data (List / Split / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/split" GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}" # Image Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train" # Image Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary" # Time Series Raw Data (List / Upload / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}" # Time Series Split Data (List / Gen Y & Split / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}" # Time Series Gen Feature (Feature Generate / Cancel / Download / Delete) POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}" # Time Series Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" # Time Series Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary" # Data Refine (Status / Create / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" POST >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" # Label Tool (Status / Create / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" POST >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" ``` --- ### Developer ```python= ## Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload" PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript" GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}" # Image Split Data (List / Split / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/split" GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}" # Image Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train" # Image Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary" # Time Series Raw Data (List / Upload / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}" # Time Series Split Data (List / Gen Y & Split / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}" # Time Series Gen Feature (Feature Generate / Cancel / Download / Delete) POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}" # Time Series Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" # Time Series Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary" # Data Refine (Status / Create / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" POST >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine" ``` --- ### Label Manager ```python= ## Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload" POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload" PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript" GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}" # Image Split Data (List / Split / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/image/split" GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}" # Image Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train" # Image Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary" # Time Series Raw Data (List / Upload / Download / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}" # Time Series Split Data (List / Gen Y & Split / DownLoad / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}" # Time Series Gen Feature (Feature Generate / Cancel / Download / Delete) POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}" DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}" # Time Series Auto ML (List / Execute / Abort) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list" POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train" # Time Series Model Info (Loss Function / Test Report / Model Summary) GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report" GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary" # Label Tool (Status / Create / Delete) GET >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" POST >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool" ``` --- ### Role User ```python= POST >>> "/account/logout" POST >>> "/account/refresh" POST >>> "/account/userinfo" GET >>> "/companys/{company_id}/get_project_list" ``` ## Time Series Model Info ### Loss Function ```python= { "1": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 }, "2": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 }, "3": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 }, "4": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 }, "5": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 }, "6": { "loss": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "accuracy": [ 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775, 0.9991189427312775 ], "val_loss": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "val_accuracy": [ 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968, 0.9979674796747968 ], "score": 2664.3628754093165 } } ``` ### Test Report ```python= { "colum_id": { "0": "1", "1": "2", "2": "3", "3": "4", "4": "5", "5": "6" }, "accuracy": { "0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1 }, "precision": { "0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1 }, "recall": { "0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1 }, "f1_score": { "0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1 }, "jaccard": { "0": 1, "1": 1, "2": 1, "3": 1, "4": 1, "5": 1 }, "log_loss": { "0": 9.992007221626413e-16, "1": 9.992007221626413e-16, "2": 9.992007221626413e-16, "3": 9.992007221626413e-16, "4": 9.992007221626413e-16, "5": 9.992007221626413e-16 } } ``` ### Model Summary ```python= "logs": { "preprocessing": [ "extract win_size 10", "==> talib done.", "==> tafresh done.", "extract win_size 20", "==> talib done.", "==> tafresh done." ], "training": { "MATERIAL_A": [ "start MATERIAL_A", "==> preprocessing done.", "==> AutoDL start", "...", "==> AutoML start", "...", "==> save model files done." ], "MATERIAL_B": [ "start MATERIAL_B", "==> preprocessing done.", "==> AutoDL start", "...", "==> AutoML start", "...", "==> save model files done." ], "MATERIAL_C": [ "start MATERIAL_C", "==> preprocessing done.", "==> AutoDL start", "...", "==> AutoML start", "...", "==> save model files done." ], "MATERIAL_D": [ "start MATERIAL_D", "==> preprocessing done.", "==> AutoDL start", "...", "==> AutoML start", "...", "==> save model files done." ] } } "summary": { "MATERIAL_A": [ "-------", "layer 1: cnn ...", "layer 2: rnn ...", "-------" ], "MATERIAL_B": [ "-------", "layer 1: cnn ...", "layer 2: rnn ...", "-------" ], "MATERIAL_C": [ "-------", "layer 1: cnn ...", "layer 2: rnn ...", "-------" ] } ```