# Fast AI API Note
## Status Message
### Image List Raw
```json=
"unlabeled": "未標註"
"success": "標註完成"
```
---
### Time Series Raw
```json=
"warning": "警告(資料出現異常)"
"in progress": "處理中"
"success": "成功"
```
---
### Image、Time Series Split
``` json=
"in progress": "處理中"
"success": "成功"
"failure": "失敗"
```
---
### Time Series Feature Generate
```json=
"in progress": "處理中"
"terminated": "中止"
"success": "成功"
"failure": "失敗"
```
---
### Image、Time Series Auto ML
```json=
"training": "處理中"
"terminated": "中止"
"success": "成功"
"failure": "失敗"
```
---
## Hyperparameters Set
### Time Series Gen Feature
#### Frontend to Backend
``` json=
{
"filename": "split filename",
"frequency": "second", // year, month, day, hour, minute, second
"name": "feature filename",
"description": "description",
"method":[ //允許空陣列
"Complexity",
"CycleIndicators",
"LogicalCondition",
"MathFunction",
"MomentumIndicators",
"StatisticFeatures",
"StatisticModels"
]
}
```
#### Backend to Ai Pipeline
```json=
// after refactory (NEW)
hyperparameter = {
"COLUMN_ID": preprocess_info.col_id,
"COLUMN_TIME": preprocess_info.col_time,
"COLUMN_TARGET": preprocess_info.col_target,
"COLUMN_TARGET_Y": preprocess_info.col_target_y,
"PERIODS": preprocess_info.period,
"FREQUENCY": "sec", // "sec", "min", "hour", "day", "month", "year" 資料頻率單位
"TAT_USE_CATEGORY": method
}
// before refactory (OLD)
hyperparameter = {
"COLUMN_ID": raw["column_id"], // 變動
"COLUMN_TIME": raw["column_time"], // 變動
"COLUMN_TARGET": preprocess["column_y"], // 變動
"COLUMN_TARGET_Y": "column_target_y", // 固定
"PERIOD_LIST": preprocess["period"], // 變動
"FG_WINDOW_SIZE_LIST": int(window_size),
"RK_FEATURES": 840, // 固定,產生的feature數量 Demo: 84、建議: 840 UP
"RK_USED_MODULE": "mini", // 固定,套件使用的特徵演算法
"TAT_USE_CATEGORY": method, // 變動
"FN_METHOD": "minmax" // 變動,資料標準化
}
```
### Time Series Auto ML
#### Frontend to Backend
``` json=
{
"name": "model_name",
"filename": "(filename)", // 此頁選擇的feature file id
"hyperparameter": {
"MODE": "Demo", // Demo, Quick, Normal, Long
"METRIC": "mae", // smape, accuracy
"TASK_TYPE": "", // classification, regression
"ALGORITHM": ["AutoML", "AutoDL"],
"DR_METHODS": ["pca", "high_correlation", "tsne"]
}
}
```
#### Backend to Pipeline
```json=
// after refactory
hyperparameters = {
"COLUMN_ID": preprocess.col_catrgory,
"COLUMN_TIME": preprocess.col_time,
"COLUMN_TARGET": preprocess.col_target,
"COLUMN_TARGET_Y": "column_target_y",
// if y_case == predict: = y_parameter["predict"]
"TRAINING_CONFIG": {
"MODE": "Demo", // Demo, Quick, Normal, Long (單選)
"METRIC": "SAMPE", // MAE, MSE, SMAPE, ACCURACY (單選)
"TASK": "regression", // classification, regression (單選)
"ALGORITHM": ["AutoML", "AutoDL"], //(複選)
"PERIODS": preprocess.y_parameter["period"],
// if y_case == predict: = None
"DR_METHODS": ["pca", "high_correlation", "tsne"], // 複選
}
}
// before refactory
hyperparameters = {
"REPORT_PATH": "model",
"COLUMN_ID": hyperparameter["COLUMN_ID"],
"COLUMN_TIME": hyperparameter["COLUMN_TIME"],
"COLUMN_TARGET": hyperparameter["COLUMN_TARGET"],
"COLUMN_TARGET_Y": "column_target_y",
"PERIOD_LIST": period,
"AUTO_MODEL_CONFIG": {
"MODE": hyperparameter["AUTO_MODEL_CONFIG"]["MODE"],
"TRAIN_CLUSTER_METHOD": "AUTO",
"DROP_ORIGINAL_FEATURE": True,
"RETRAIN_SIZE": hyperparameter["AUTO_MODEL_CONFIG"]["RETRAIN_SIZE"],
"AI_PIP_MAX_TRAIN_SIZE": 500,
"AI_PIP_TRAIN_SCORING": hyperparameter["AUTO_MODEL_CONFIG"]["AI_PIP_TRAIN_SCORING"],
"AI_PIP_TUNED_PARAMETERS": {
"Auto_keras_tsf": {
"tuner": "greedy",
"max_trials": 10,
"epochs": 1000
},
"Auto_sk_tsf": {
"time_left_for_this_task": 7200,
"per_run_time_limit": 1800,
"ensemble_size": 25,
"ensemble_nbest": 25,
"n_jobs": 1,
"resampling_strategy": "holdout",
"resampling_strategy_arguments": {
"train_size": 0.9
},
"delete_tmp_folder_after_terminate": False,
"dask_port": 30679
}
},
"AI_PIP_ESTIMATOR_LIST": hyperparameter["AUTO_MODEL_CONFIG"]["AI_PIP_ESTIMATOR_LIST"],
"DR_METHOD": hyperparameter["AUTO_MODEL_CONFIG"]["DR_METHOD"],
"LOW_PREDICTABLE_PARAMETERS": {
"method": "Croston_tsf",
"scoring": "mae",
"value_parameters": [
["naive", None],
["ma", 2],
["ma", 3],
["ma", "all"],
["ema", 1],
["ema", 3]
],
"demand_interval_parameters": [
["naive", None],
["ma", 2],
["ma", 3],
["adi", None],
["ma", "all"],
["ema", 1],
["ema", 3]
]
}
}
}
```
### Image Auto ML
#### Frontend to Backened
```json=
{
"name": "model_name",
"filename": "(filename)", // 此頁選擇的split file id
"hyperparameter": {} // 此頁沒有其他參數需要設定所以帶空物件
}
```
#### Backend to Ai Pipeline
```json=
hyperparameters = {
"max_trails": 3
"epochs": 10,
"batch_size": 32,
"image_size": 224}
```
## Role Set
### Super Admin
```python=
POST >>> "/account/logout"
POST >>> "/account/refresh"
POST >>> "/account/userinfo"
GET >>> "/companys" # 取得公司列表
POST >>> "/companys" # 新增公司列表
PUT >>> "/companys/{company_id}" # 編輯公司列表
PUT >>> "/companys/{company_id}" # 編輯公司狀態
GET >>> "/companys/users" # 取得各公司底下員工列表 (Read Only)
GET >>> "/companys/projects" # 取得各公司底下專案列表 (Read Only)
```
---
### Company Admin
```python=
POST >>> "/account/logout"
POST >>> "/account/refresh"
POST >>> "/account/userinfo"
GET >>> "/companys/{company_id}/projects" # 取得所屬公司底下專案列表
POST >>> "/companys/{company_id}/projects" # 新增所屬公司底下專案列表
PUT >>> "/companys/{company_id}/projects/{project_id}" # 編輯所屬公司底下專案列表 / 編輯所屬公司底下專案的成員
PUT >>> "/companys/{company_id}/projects/{project_id}/status" # 編輯所屬公司底下專案狀態
GET >>> "/companys/{company_id}/users" # 取得所屬公司底下員工列表
POST >>> "/companys/{company_id}/users" # 新增所屬公司底下員工列表
PUT >>> "/companys/{company_id}/users/{user_id}/status" # 編輯所屬公司底下員工狀態
GET >>> "/companys/{company_id}/projects/{project_id}/users" # 取得所屬公司底下專案的成員狀態
POST >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}" # 新增特定專案的成員列表
DELETE >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}"# 移除特定專案的成員列表
```
### Porject Admin
```python=
POST >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}" # 新增特定專案的成員列表
DELETE >>> "/companys/{company_id}/projects/{project_id}/users/{user_id}"# 移除特定專案的成員列表
# Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}"
# Image Split Data (List / Split / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/split"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}"
# Image Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
# Image Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary"
# Time Series Raw Data (List / Upload / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}"
# Time Series Split Data (List / Gen Y & Split / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}"
# Time Series Gen Feature (Feature Generate / Cancel / Download / Delete)
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}"
# Time Series Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
# Time Series Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary"
# Data Refine (Status / Create / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
POST >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
# Label Tool (Status / Create / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
POST >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
```
---
### Developer
```python=
## Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}"
# Image Split Data (List / Split / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/split"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}"
# Image Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
# Image Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary"
# Time Series Raw Data (List / Upload / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}"
# Time Series Split Data (List / Gen Y & Split / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}"
# Time Series Gen Feature (Feature Generate / Cancel / Download / Delete)
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}"
# Time Series Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
# Time Series Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary"
# Data Refine (Status / Create / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
POST >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/DataRefine"
```
---
### Label Manager
```python=
## Image Raw Data (List / Upload Raw / Upload Label / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_raw_upload"
POST >>> "/companys/{company_id}/projects/{project_id}/image/file_label_upload"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/descript"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete/{filename}"
# Image Split Data (List / Split / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/split"
GET >>> "/companys/{company_id}/projects/{project_id}/image/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/image/delete_split_data/{filename}"
# Image Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/image/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/image/model/train"
# Image Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/image/get_model_summary"
# Time Series Raw Data (List / Upload / Download / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/file_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/file_upload"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete/{filename}"
# Time Series Split Data (List / Gen Y & Split / DownLoad / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_split_list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/split"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_split_data/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_split_data/{filename}"
# Time Series Gen Feature (Feature Generate / Cancel / Download / Delete)
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/gen_feature"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/cancel_feature/{filename}"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/download_feature/{filename}"
DELETE >>> "/companys/{company_id}/projects/{project_id}/time_series/delete_feature/{filename}"
# Time Series Auto ML (List / Execute / Abort)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/model/list"
POST >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
PUT >>> "/companys/{company_id}/projects/{project_id}/time_series/model/train"
# Time Series Model Info (Loss Function / Test Report / Model Summary)
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_loss_function"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_test_report"
GET >>> "/companys/{company_id}/projects/{project_id}/time_series/get_model_summary"
# Label Tool (Status / Create / Delete)
GET >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
POST >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
DELETE >>> "/companys/{company_id}/projects/{project_id}/apps/LabelTool"
```
---
### Role User
```python=
POST >>> "/account/logout"
POST >>> "/account/refresh"
POST >>> "/account/userinfo"
GET >>> "/companys/{company_id}/get_project_list"
```
## Time Series Model Info
### Loss Function
```python=
{
"1": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
},
"2": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
},
"3": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
},
"4": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
},
"5": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
},
"6": {
"loss": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"accuracy": [
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775,
0.9991189427312775
],
"val_loss": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"val_accuracy": [
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968,
0.9979674796747968
],
"score": 2664.3628754093165
}
}
```
### Test Report
```python=
{
"colum_id": {
"0": "1",
"1": "2",
"2": "3",
"3": "4",
"4": "5",
"5": "6"
},
"accuracy": {
"0": 1,
"1": 1,
"2": 1,
"3": 1,
"4": 1,
"5": 1
},
"precision": {
"0": 1,
"1": 1,
"2": 1,
"3": 1,
"4": 1,
"5": 1
},
"recall": {
"0": 1,
"1": 1,
"2": 1,
"3": 1,
"4": 1,
"5": 1
},
"f1_score": {
"0": 1,
"1": 1,
"2": 1,
"3": 1,
"4": 1,
"5": 1
},
"jaccard": {
"0": 1,
"1": 1,
"2": 1,
"3": 1,
"4": 1,
"5": 1
},
"log_loss": {
"0": 9.992007221626413e-16,
"1": 9.992007221626413e-16,
"2": 9.992007221626413e-16,
"3": 9.992007221626413e-16,
"4": 9.992007221626413e-16,
"5": 9.992007221626413e-16
}
}
```
### Model Summary
```python=
"logs": {
"preprocessing": [
"extract win_size 10",
"==> talib done.",
"==> tafresh done.",
"extract win_size 20",
"==> talib done.",
"==> tafresh done."
],
"training": {
"MATERIAL_A": [
"start MATERIAL_A",
"==> preprocessing done.",
"==> AutoDL start",
"...",
"==> AutoML start",
"...",
"==> save model files done."
],
"MATERIAL_B": [
"start MATERIAL_B",
"==> preprocessing done.",
"==> AutoDL start",
"...",
"==> AutoML start",
"...",
"==> save model files done."
],
"MATERIAL_C": [
"start MATERIAL_C",
"==> preprocessing done.",
"==> AutoDL start",
"...",
"==> AutoML start",
"...",
"==> save model files done."
],
"MATERIAL_D": [
"start MATERIAL_D",
"==> preprocessing done.",
"==> AutoDL start",
"...",
"==> AutoML start",
"...",
"==> save model files done."
]
}
}
"summary": {
"MATERIAL_A": [
"-------",
"layer 1: cnn ...",
"layer 2: rnn ...",
"-------"
],
"MATERIAL_B": [
"-------",
"layer 1: cnn ...",
"layer 2: rnn ...",
"-------"
],
"MATERIAL_C": [
"-------",
"layer 1: cnn ...",
"layer 2: rnn ...",
"-------"
]
}
```