## Refinitiv ### Historical Data Documentaion: [Refinitiv Data Library for Python Documentation](https://cdn.refinitiv.com/public/rd-lib-python-doc/1.0.0.0/book/en/index.html) #### Python API: get_history() ##### Parameters - **universe**: Single instrument or list of instruments to request. - **fields**: Single field or list of fields to request. - **interval**: Data sampling interval. - supported values: tick, tas, taq, minute, 1min, 5min, 10min, 30min, 60min, hourly, 1h, daily, 1d, 1D, 7D, 7d, weekly, 1W, monthly, 1M, quarterly, 3M, 6M, yearly, 1Y - **start**: The start date and timestamp of the requested history. - **end**: The end date and timestamp of the requested history. - **adjustment** - **count**: The maximum number of data points returned. ##### Returned value A pandas.DataFrame with fields in columns and instruments as row index. ##### Examples 1. The following example demonstrates the last 5 ticks of historical pricing data: ``` import refinitiv.data as rd # open session rd.open_session() df = rd.get_history( universe="GOOG.O", fields=["BID", "ASK"], interval="tick", count=5 ) print(df) # close session rd.close_session() ``` Output: ``` GOOG.O BID ASK Timestamp 2022-08-11 22:30:22.567 119.90 120.16 2022-08-11 22:31:02.653 119.90 120.16 2022-08-11 22:31:11.701 119.88 120.16 2022-08-11 22:31:11.749 119.90 120.16 2022-08-11 22:31:22.840 119.90 120.16 ``` 2. The following example demonstrate the OHLC bar given the data and resampling time. ``` df=rd.get_history(universe="GOOG.O", fields=['BID','ASK'], interval="tick", count=2000) df.ohlc("5s") ``` Output: ``` GOOG.O BID ASK open high low close open high low close Timestamp 2022-04-05 08:12:05+00:00 2869.57 2869.57 2869.57 2869.57 2882.2 2882.2 2881.4 2881.40 2022-04-05 08:12:10+00:00 2868.90 2870.07 2868.90 2870.07 2881.4 2882.2 2881.4 2881.40 2022-04-05 08:12:15+00:00 NaN NaN NaN NaN NaN NaN NaN NaN 2022-04-05 08:12:20+00:00 2868.90 2870.97 2868.90 2869.07 2881.4 2881.4 2881.4 2881.40 2022-04-05 08:12:25+00:00 2869.07 2870.07 2868.90 2870.07 2881.4 2881.4 2881.4 2881.40 ... ... ... ... ... ... ... ... ... 2022-04-05 09:25:00+00:00 2870.01 2870.01 2870.01 2870.01 2880.0 2888.0 2880.0 2886.92 2022-04-05 09:25:05+00:00 2870.01 2870.01 2870.01 2870.01 2888.0 2888.0 2880.5 2885.00 2022-04-05 09:25:10+00:00 NaN NaN NaN NaN NaN NaN NaN NaN 2022-04-05 09:25:15+00:00 NaN NaN NaN NaN NaN NaN NaN NaN 2022-04-05 09:25:20+00:00 2870.01 2870.01 2870.01 2870.01 2880.0 2883.0 2880.0 2883.00 ``` More examples can be found [Access Layer Examples](https://github.com/LSEG-API-Samples/Example.DataLibrary.Python/blob/main/Examples/1-Access/EX-1.01.02-GetHistory.ipynb) and [Content Layer Examples](https://github.com/LSEG-API-Samples/Example.DataLibrary.Python/blob/main/Examples/2-Content/2.01-HistoricalPricing/EX-2.01.01-HistoricalPricing.ipynb) ## Bloomberg ### Historical Data Bloomberg's data is based on [examples in Core Develper Guide](https://data.bloomberglp.com/professional/sites/10/2017/03/BLPAPI-Core-Developer-Guide.pdf). [Bloomberg Python API](https://github.com/msitt/blpapi-python/tree/master) #### Reference Data Service The reference data service provides the ability to access the following Bloomberg data with the Request/Response paradigm: - **Reference Data (ReferenceDataRequests)**: Provides the current value of a security/field pair. - **Historical End-of-Day Data (HistoricalDataRequest)**: Provides end-of-day data over a defined period of time for a security/field pair. - **Historical Intraday Tick Data (IntradayTickRequests)**: Provides each tick over a defined period of time for a single security and one or more Event types. - **Historical Intraday Bar Data (IntradayBarRequests)**: Provides a series of intraday summaries over a defined period of time for a single security and Event type. - ## Factset ## Comparison <table> <thead> <tr> <th></th> <th>Bloomberg Terminal</th> <th>Bloomberg B-PIPE</th> <th>Bloomberg Data License</th> <th>Refinitiv</th> <th>FactSet</th> </tr> </thead> <tbody> <tr> <td>Pricing</td> <td>$30000/year</td> <td>>$8500/month</td> <td>以欄位計價</td> <td>$22,000/year</td> <td>$12,000/year</td> </tr> <tr> <td>Content</td> <td></td> <td>real-time streaming data, ...</td> <td>historical data, snapshot, reference data, foundamental data, ...</td> <td>historical data (Request/Response), real-time streaming data (Subscription), ...</td> <td></td> </tr> <tr> <td>Language</td> <td></td> <td>C++, Python, ...</td> <td>C++, Python, ...</td> <td>C++ (Refinitiv Real-Time C++ SDK), Python (Refinitiv Data Library for Python), ...</td> <td></td> </tr> </tbody> </table> ## Questions ### Bloomberg 1. [Market Data](https://www.bloomberg.com/professional/product/market-data/)及[Reference Data](https://www.bloomberg.com/professional/product/reference-data/)等,是否有越南,印尼,以及馬來西亞的歷史及即時資料?不同國家資料是否有normalized? 2. 是否有提供下單的服務? 3. 是否有rate limit? 4. ~~是否有行情表或Contract Info? (以日期及國家為單位,e.g.可一次query/request取得2023/11/07越南的各商品資料)~~ 5. Reference Data (historical pricing data, dividends, or maturity dates, etc.)是否可以以日期及國家為單位去做request,e.g.可一次query/request取得2023/11/07越南的各商品的相關資料 6. license是否一定包含terminal,若不需要terminal(只需要data的部分),價格是否有便宜?一個license是否限定同時只有一個user可以使用? 7. ## Reference - [Pricing Comparison](https://www.wallstreetprep.com/knowledge/bloomberg-vs-capital-iq-vs-factset-vs-thomson-reuters-eikon/)