The given integral is $$ I=\int 2^{-x}dx \tag1$$ We solve the above integral by using the following substitution: \begin{align*} &2^{-x} = t\\ \implies -2^{-x}\cdot&\ln(2)\cdot dx=dt\\ \implies 2^{-x}&\cdot dx =-\frac{dt}{\ln(2)} \end{align*} Substituting the above value in the integral (1), we have: \begin{align*} I&=\int -\frac{dt}{\ln(2)}\\ &= -\frac{1}{\ln(2)}\int dt\\ &=-\frac{1}{\ln(2)}t +c\\ &= \frac{-2^{-x}}{\ln(2)} +c \end{align*} Thus, we have $$\int 2^{-x}dx = -\frac{2^{-x}}{\ln(2)} +c$$